Abstract:
A coated substrate including a substrate having at least one surface: and, disposed on the surface, a first coating having a Pigment Volume Concentration (“PVC”) higher than the critical PVC; and, disposed on said first coating, a clear matte second coating including from 1% to 99% by weight, based on the weight of the second coating, a particulate polymer having a particle diameter of from 0.5 microns to 30 microns is provided. Also provided are a method for providing a coated substrate and a method for improving the stain resistance of a coating having a PVC higher than the critical PVC
Abstract:
This invention relates to a multilayer coating system derived from Titanium dioxide free aqueous coating compositions. The multilayer coating system comprises at least two layers including a layer of base coating which provides good hiding function for substrates and a second layer of clear top coating which provides surface protection functions for the coating system. The base coating composition comprises an opaque (co)polymer having at least one void per (co)polymer particle. The top coating composition comprises a duller (co)polymer chosen from a multi-stage (co)polymer, a single stage crosslinked (co)polymer, and mixtures thereof.
Abstract:
Provided herein is a method of curing a waterborne coating comprising: (1) preparing a waterborne coating comprising: (a) at least one photoinitiator and (b) at least one pigment, wherein the pigment volume concentration of the waterborne coating is 2.0% to 68.7%; (2) curing the waterborne coating using UV radiation; and (3) curing the waterborne coating using EB. The method may further comprise the step of drying the waterborne coating prior to curing the waterborne coating using UV radiation. Also described is a waterborne coating prepared from the method described herein and an article to which the waterborne coating is applied.
Abstract:
The present invention provides a system for monitoring and controlling an industrial paint operation, where a five-sided intermodal shipping container is painted with a water-based coating composition. The system includes a paint application system, a drying system with a chamber configured to handle one or more intermodal shipping containers, and modules for monitoring and controlling the application of paint and the drying of the applied paint.
Abstract:
Disclosed is a method for treating a grained material. A nonlimiting example of the method includes the operations of providing a workpiece having grains, exasperating a surface of the workpiece to open the grains, applying at least one coat of a base paint to the exasperated surface, applying at least one layer of clear coat on the base paint, applying at least one of a glaze and a paint on the clear coat, and surface treating to reveal grains of the workpiece. Disclosed also are items of furniture and sheet materials treated by the aforementioned process.
Abstract:
Disclosed is a method for making multicoat colour and/or effect paint systems employing a pigmented aqueous basecoat material comprising a mixture M comprised of (K1) a branched C8-17alkane or a mixture thereof, (K2) a branched C18-25 alkane or a mixture thereof, and (K3) a water-miscible fluorinated polymer or a mixture thereof, where mixture M comprises 0.1% to 5% by weight, based on the weight of the aqueous basecoat material, component (K1) comprises 34% to 94% by weight, component (K2) comprises 5% to 46% by weight, and component (K3) comprises 1% to 20% by weight, all based on the weight of the mixture M, and components (K1) and (K2) have a degree of branching which corresponds to a ratio of the number of >CH— and —CH2— groups to the number of —CH3 groups of at least 25:75.
Abstract:
The present invention provides a system for monitoring and controlling an industrial paint operation, where a five-sided intermodal shipping container is painted with a water-based coating composition. The system includes a paint application system, a drying system with a chamber configured to handle one or more intermodal shipping containers, and modules for monitoring and controlling the application of paint and the drying of the applied paint.
Abstract:
The present invention relates to a heating paint which can be used to generate a surface heating device on a wall. The invention further relates to a surface heating device which is suitable in particular for heating a room, and also to a kit for producing a surface heating device on a wall. The invention relates, moreover, to uses of the subjects of the invention, especially for producing a surface heating device and, respectively, for heating a room, and to corresponding methods.
Abstract:
This invention relates to a multilayer coating system derived from Titanium dioxide free aqueous coating compositions. The multilayer coating system comprises at least two layers including a layer of base coating which provides good hiding function for substrates and a second layer of clear top coating which provides surface protection functions for the coating system. The base coating composition comprises an opaque (co)polymer having at least one void per (co)polymer particle. The top coating composition comprises a duller (co)polymer chosen from a multi-stage (co)polymer, a single stage crosslinked (co)polymer, and mixtures thereof.
Abstract:
Disclosed is a method for making multicoat color and/or effect paint systems employing a pigmented aqueous basecoat material comprising a mixture M comprised of (K1) a branched C8-17 alkane or a mixture thereof, (K2) a branched C18-25 alkane or a mixture thereof, and (K3) a water-miscible fluorinated polymer or a mixture thereof, where mixture M comprises 0.1% to 5% by weight, based on the weight of the aqueous basecoat material, component (K1) comprises 34% to 94% by weight, component (K2) comprises 5% to 46% by weight, and component (K3) comprises 1% to 20% by weight, all based on the weight of the mixture M, and components (K1) and (K2) have a degree of branching which corresponds to a ratio of the number of >CH— and —CH2— groups to the number of —CH3 groups of at least 25:75.