Abstract:
PURPOSE: A thermoelectric element, a thermoelectric element module and a formation method of the thermoelectric element are provided to reduce costs and mass-produce the thermoelectric element by forming the thermoelectric element on a substrate plane with a lamination type. CONSTITUTION: A first semiconductor nanowire(110) of a first challenge type includes a first barrier region(112). A second semiconductor nanowire(120) of a second challenge type includes a second barrier region. A first electrode(130) is connected to one phase of the first semiconductor nanowire. A second electrode(140) is connected to one phase of the second semiconductor nanowire. A common electrode(150) is connected to the other terminal of the first semiconductor nanowire and the second semiconductor nanowire. A thermal conductivity of the first barrier region is greater than the thermal conductivity of the first semiconductor nanowire.
Abstract:
PURPOSE: A switching circuit using a dynamic threshold voltage device and a low area high efficiency DC-DC converter for a mobile unit including the same uses are provided to minimize a conduction loss in action mode by using a DT-CMOS transistor in which has threshold voltage it dynamics as the switching element. CONSTITUTION: A switching circuit(200) comprises a normal mode action unit(210) acting in normal mode and a standby mode operation unit(230) acting in hold mode. The normal mode action unit includes a first DT-CMOS transistor(Q1) and a second DT-CMOS transistor(Q2) with dynamic threshold voltage, and a first MOS transistor(M21) and a second MOS transistor(M22) in which are connected to diode. The standby mode operation unit comprises the first, second inverter and a third, and a forth MOS transistor. In a gate of the first DT-CMOS transistor, the source of the first MOS transistor is connected.
Abstract:
에너지 효율을 높일 수 있는 염료감응 태양전지를 개시한다. 본 발명에 따른 염료감응 태양전지는 서로 대향하고 있는 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 개재되어 있는 전해질층을 포함하되, 상기 제1 전극은 투명한 다공성 전도층 및 상기 다공성 전도층의 공극과 상기 다공성 전도층의 상기 제2 전극을 향한 표면에 형성되어 있는 나노입자 반도체 산화물 및 상기 나노입자 반도체 산화물층에 흡착되어 있는 염료분자를 포함한다. 염료감응 태양전지, 다공성 전도층, 공극, 나노입자 반도체 산화물, 염료분자
Abstract:
The present invention provides a conductive substrate structure with controlled nanorod density so that the contact between a conductive substrate and an active layer can be expanded, and a method of manufacturing the conductive substrate structure. The conductive substrate structure includes: a base substrate (100), and a conductive substrate (200) formed on the base substrate (100), and surface treated with an organic molecule; and nanorods (300) grown from a seed layer applied on the conductive substrate, wherein the seed layer is applied only on a predetermined region of the conductive substrate by using the self-assembling characteristics of the organic molecule, and thus, controlling the density of the nanorods (300). Furthermore, the method of manufacturing the substrate structure includes: treating a conductive substrate (200), formed on top of a base substrate (100), with an organic molecule; applying the seed layer only to a predetermined region of the conductive substrate by using the self-assembling characteristics of the organic molecules: and growing nanorods (300) with a controlled density from the seed layer.
Abstract:
본 발명은 실리콘 기판 및 상기 실리콘 기판의 상부에 증착되는 절연막, 상기 절연막의 상부에 형성되는 압전판 및 상기 압전판의 상부에 형성되는 맞물림 전극을 포함하되 상기 맞물림 전극은 극성이 직렬로서 배치되도록 패턴 형성되는 것을 특징으로 하는 압전 소자 마이크로폰, 마이크로 스피커 및 마이크로폰-스피커 일체형 디바이스를 제공할 수 있다. 압전 소자, 마이크로폰, 마이크로 스피커
Abstract:
본 발명은 기준 신호를 적어도 3 종류 이상의 크기와 위상을 가지는 신호로 분리하여 발생시키는 신호 제어부, 상기 신호 제어부에서 발생시키는 신호 중 서로 상쇄되는 크기와 위상을 가지는 제1 신호 및 제2 신호를 제어하는 제1 신호 처리부 및 제2 신호 처리부, 상기 신호 제어부에서 발생시키는 신호 중 기준 신호와 동일한 크기와 위상을 가지는 신호를 제어하는 중앙 신호 처리부, 상기 제1 신호 처리부 및 제2 신호 처리부에서 출력되는 신호를 음향 신호로 변환하여 출력하는 제1 스피커 배열 및 제2 스피커 배열 및 상기 중앙 신호 처리부에서 출력되는 신호를 음향 신호로 변환하여 출력하고 상기 제1 스피커 배열 및 제2 스피커 배열의 사이에 위치하는 중앙 스피커를 포함하는 지향성 음향 생성 장치를 제공할 수 있다.
Abstract:
본 발명은 복수의 연산소자(PE)를 구비하는 병렬 프로세서를 이용하여 3차원 그래픽 기하 변환을 수행하는 방법에 관한 것으로, 상기 방법은, 상기 병렬 프로세서를 이용하여 제1 그룹의 정점 벡터들에 대한 모델 변환 및 투영 변환을 수행하는 단계와, 범용 프로세서를 이용하여 상기 제1 그룹의 정점 벡터들에 대한 사원수 보정에 이용되는 값을 계산함과 동시에, 제2 그룹의 정점 벡터들에 대한 모델 변환 및 투영 변환을 수행하는 단계와, 상기 제1 그룹의 정점 벡터들에 대한 사원수 보정 및 화면 매핑을 수행함과 동시에, 상기 제2 그룹의 정점 벡터들에 대한 사원수 보정에 이용되는 값을 상기 범용 프로세서를 이용하여 계산하는 단계와, 상기 제2 그룹의 정점 벡터들에 대한 사원수 보정 및 화면 매핑을 수행하는 단계를 포함한다.
Abstract:
본 발명은 파이프라인 아날로그-디지털 변환기(Pipeline analog to digital converter, 이하 '파이프라인 ADC'라 한다)를 제어하는 방법에 관한 것으로서, 보다 상세하게는 전단 샘플-앤-홀드 증폭기(Front-end sample-and-hold amplifier, 이하 '전단 SHA'라 한다)를 사용하지 않는 파이프라인 ADC에서 발생하는 샘플링 부정합(Sampling mismatch)을 최소화하기 위해 샘플링 시점을 제어하는 방법에 관한 것이다. 본 발명에 따른 파이프라인 아날로그-디지털 변환기 제어 방법은, 제 1 스테이지에 포함된 아날로그-디지털 변환기 및 잔류신호 생성기가 아날로그 입력신호를 동시에 샘플링하여 각각 제 1 샘플링 값 및 제 2 샘플링 값을 생성하는 단계; 상기 잔류신호 생성기가 상기 제 2 샘플링 값을 홀딩하는 동시에 상기 아날로그-디지털 변환기는 상기 제 1 샘플링 값을 증폭하여 대응하는 디지털 코드로 변환하는 단계; 및 상기 잔류신호 생성기가 상기 디지털 코드를 이용하여 잔류신호를 생성하는 단계로 구성된다. 본 발명은 파이프라인 ADC에서 전단 SHA를 제거함에 따라 발생하는 샘플링 부정합을 최소화함으로써, 전단 SHA를 사용하지 않고도 안정적인 성능을 보장할 수 있다. 이로 인해, 본 발명은 전단 SHA를 사용하지 않음으로써 칩 면적 및 전력 소모를 절감하고, 전체 파이프라인 ADC의 성능을 향상시킬 수 있다. 아날로그-디지털 변환기, ADC, MDAC, 샘플링 부정합, SHA
Abstract:
에너지 효율을 높일 수 있는 염료감응 태양전지를 개시한다. 본 발명에 따른 염료감응 태양전지는 서로 대향하고 있는 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 개재되어 있는 전해질층을 포함하되, 상기 제1 전극은 투명한 다공성 전도층 및 상기 다공성 전도층의 공극과 상기 다공성 전도층의 상기 제2 전극을 향한 표면에 형성되어 있는 나노입자 반도체 산화물 및 상기 나노입자 반도체 산화물층에 흡착되어 있는 염료분자를 포함한다. 염료감응 태양전지, 다공성 전도층, 공극, 나노입자 반도체 산화물, 염료분자
Abstract:
A gain amplifier of a switched capacitor structure is provided to improve an operation speed and performance and to reduce a slewing time by previously resetting an output terminal to an expected output voltage value. An input voltage is applied from the input terminal to a first switch(SW1). A sampling capacitor(Cs) stores an input voltage in a first clock. An N stage amplifier(111,112) amplifies and outputs the input voltage stored in a sampling capacitor in a second clock which is not overlapped with the first clock. A second switch(SW2) and a third switch(SW3) apply the common mode voltage to the N stage amplifier. A feedback capacitor(CF) is connected between an input and an output of the N stage amplifier. One side of an input capacitor is connected to the input terminal. A fourth switch connects the other terminal of the input capacitor between the (N-1)-th amplifier and the N-th amplifier in the first clock. A fifth switch(SW5) connects the (N-1)-th amplifier and the N-th amplifier of the N stage amplifier in the second clock.