Abstract:
Methods for semiconductor fabrication include forming (304) a well in a semiconductor substrate. A pocket is formed (306) within the well, the pocket having an opposite doping polarity as the well to provide a p-n junction between the well and the pocket. Defects are created (310) at the p-n junction such that a leakage resistance of the p-n junction is decreased.
Abstract:
In one embodiment a method is provided that includes providing a structure including a semiconductor substrate (12) having at least one device region (14) located therein, and a doped semiconductor layer located on an upper surface of the semiconductor substrate in the at least one device region. After providing the structure, a sacrificial gate region (28) having a spacer (34) located on sidewalls thereof is formed on an upper surface of the doped semiconductor layer. A planarizing dielectric material (36) is then formed and the sacrificial gate region (28) is removed to form an opening (38) that exposes a portion of the doped semiconductor layer. The opening is extended to an upper surface of the semiconductor substrate (20) and then an anneal is performed that causes outdiffusion of dopant from remaining portions of the doped semiconductor layer forming a source region (40) and a drain region (42) in portions of the semiconductor substrate that are located beneath the remaining portions of the doped semiconductor layer. A high k gate dielectric (46) and a metal gate (48) are then formed into the extended opening.
Abstract:
Methods of forming a deep trench capacitor memory device and logic devices on a single chip with hybrid surface orientation. The methods allow for fabrication of a system-on-chip (SoC) with enhanced performance including n-type complementary metal oxide semiconductor (CMOS) device SOI arrays and logic transistors on (100) surface orientation silicon, and p-type CMOS logic transistors on (110) surface orientation silicon. In addition, the method fabricates a silicon substrate trench capacitor within a hybrid surface orientation SOI and bulk substrate. Cost-savings is realized in that the array mask open and patterning for silicon epitaxial growth is accomplished in the same step and with the same mask.
Abstract:
Ausführungsformen der vorliegenden Erfindung beziehen sich auf Verfahren und resultierende Strukturen für Nanoblatteinheiten mit defektfreien Kanälen. Bei einer nichtbeschränkenden Ausführungsform der Erfindung wird ein Nanoblattstapel über einem Substrat ausgebildet. Der Nanoblattstapel enthält abwechselnde erste Opferschichten und zweite Opferschichten. Eine Schicht der ersten Opferschichten weist eine größere Dicke als die übrigen ersten Opferschichten auf. Die ersten Opferschichten werden entfernt, und Halbleiterschichten werden auf Flächen der zweiten Opferschichten ausgebildet. Die Halbleiterschichten enthalten einen ersten Satz und einen zweiten Satz von Halbleiterschichten. Die zweiten Opferschichten werden entfernt, und ein Isolationsdielektrikum wird zwischen dem ersten Satz und dem zweiten Satz von Halbleiterschichten ausgebildet.
Abstract:
Es werden eine Halbleiterstruktur und ein Verfahren zum Bilden einer Halbleiterstruktur mit einer selbstausgerichteten dielektrischen Säule zum Verringern einer parasitären Grabensilicid-Gate-Kapazität bereitgestellt. Über einem Substrat (204) wird ein Nanosheet-Stapel (206) gebildet. In Nachbarschaft zu dem Nanosheet-Stapel (206) und auf einer Zone einer flachen Grabenisolierung (212) des Substrats (204) wird eine dielektrische Säule (402) angeordnet. Der Nanosheet-Stapel (206) wird ausgespart, um eine Fläche der Zone der flachen Grabenisolierung (212) freizulegen, und auf der freigelegten Fläche der Zone der flachen Grabenisolierung (212) wird eine Source- oder Drain-Zone (S/D-Zone) (602) gebildet. Es wird ein Kontaktgraben (802) gebildet, welcher eine Fläche der S/D-Zone (602) und eine Fläche der dielektrischen Säule (402) frei legt.
Abstract:
Eine Technik zum Bereitstellen einer neuen Feldeffekttransistor(FET)-Architektur, welche eine zentrale Finnenzone und eine oder mehrere vertikal gestapelte Nanoschichten umfasst. Es wird eine nicht-planare Kanalzone gebildet, welche eine erste Halbleiterschicht (208), eine zweite Halbleiterschicht (206) und eine finnenförmige Brückenschicht zwischen der ersten Halbleiterschicht (208) und der zweiten Halbleiterschicht (206) aufweist. Das Bilden der nicht-planaren Kanalzone kann ein Bilden eines Nanoschichtstapels über einem Substrat (204), ein Bilden eines Grabens (502) durch Entfernen eines Abschnitts des Nanoschichtstapels und ein Bilden einer dritten Halbleiterschicht (602) in dem Graben (502) umfassen. Äußere Flächen der ersten Halbleiterschicht (208), der zweiten Halbleiterschicht (206) und der finnenförmigen Brückenzone definieren eine effektive Kanalbreite der nicht-planaren Kanalzone.
Abstract:
Réalisation d'un transistor à structure de canal contrainte comprenant,: a) prévoir un empilement comportant une alternance de premiers barreaux de deuxièmes barreaux semi-conducteurs, b) réaliser une grille factice, c) former des espaceurs isolants (23a, 23b), d) réaliser des blocs (47a, 47b) de mise en contrainte de part et d'autre et contre les espaceurs isolants de manière exercer une contrainte en tension ou en compression sur les espaceurs isolants (23a, 23b), puis, e) retirer la grille factice de sorte à libérer une ouverture entre les espaceurs isolants (23a, 23b), f) former dans ladite ouverture une grille de remplacement.
Abstract:
Ein Verfahren zur Verringerung der parasitären Kapazität einer Halbleiterstruktur umfasst Bilden einer Finnenstruktur über einem Substrat, Bilden einer ersten Source/Drain-Zone zwischen der Finnenstruktur und dem Substrat, Bilden erster Abstandhalter in Nachbarschaft zu der Finnenstruktur, Bilden zweiter Abstandhalter in Nachbarschaft zu der ersten Source/Drain-Zone und Aussparen der ersten Source/Drain-Zone in frei liegenden Bereichen. Das Verfahren umfasst ferner Bilden einer Zone einer flachen Grabenisolierung (STI) innerhalb der frei liegenden Bereiche der ausgesparten ersten Source/Drain-Zone, Abscheiden eines unteren Abstandhalters über der STI-Zone, Bilden eines Metall-Gate-Stapels über dem unteren Abstandhalter, Abscheiden eines oberen Abstandhalters über dem Metall-Gate-Stapel, Schneiden des Metall-Gate-Stapels, Bilden einer zweiten Source/Drain-Zone über der Finnenstruktur und Bilden von Kontakten, so dass sich die STI-Zone über eine Länge zwischen dem Metall-Gate-Stapel und der ersten Source/Drain-Zone erstreckt.
Abstract:
Halbleiterstruktur, die eine Vielzahl von parallelen, ein leitfähiges Material beinhaltenden Strukturen aufweist, die parallele Seitenwände aufweisen und sich auf einem Halbleitersubstrat 8 befinden und ein konstantes Rastermaß in einer horizontalen Richtung senkrecht zu den parallelen Seitenwänden aufweisen, wobei: eine der Vielzahl von parallelen, ein leitfähiges Material beinhaltenden Strukturen (76, 80, 36, 38, 73) ein U-förmiges Gate-Dielektrikum 80 und einen metallischen Gate-Leiter-Elektroden-Anteil 76 beinhaltet, der ein metallisches Material aufweist; und eine weitere der Vielzahl von parallelen, ein leitfähiges Material beinhaltenden Strukturen eine Kontakt-Durchkontakt-Struktur 73 beinhaltet, die das metallische Material aufweist und mit einem von einem Source-Bereich und einem Drain-Bereich 34 eines Transistors leitfähig verbunden ist, der sich auf dem Halbleitersubstrat befindet; und ein Abstand zwischen einer Außenwand des U-förmigen Gate-Dielektrikums und einer Seitenwand der Kontakt-Durchkontakt-Struktur gleich dem konstanten Rastermaß ist.