Abstract:
Protein layers (1) repeating regularly in two dimensions comprise protein protomers (2) which each comprise at least two monomers (5), (6) genetically fused together. The monomers (5), (6) are monomers of respective oligomer assemblies (3), (4) into which the monomers are assembled to assembly of the protein layer. The first oligomer assembly (3) belongs to a dihedral point group of order O, where O equals (3), (4) or (6) and has a set of O rotational symmetry axes of order (2). The second oligomer assembly (4) has a rotational symmetry axis of order (2). Due to the symmetry of the oligomer assemblies (3), (4), the rotational symmetry axes of each second oligomer assembly (4) is aligned with one of said set of O rotational symmetry axes of a first oligomer assembly (3) with (2) protomers being arranged symmetrically therearound. Thus, an 2-fold fusion between the oligomer assemblies (3), (4) is produced and the arrangements of the rotational symmetry axes of the oligomer assemblies (3), (4) cause the protein layer to repeat regularly. The protein layer has many uses, for example to support molecular entities for biosensing, x-ray crystallography or electron microscopy.
Abstract:
This charged particle beam device irradiates a primary charged particle beam generated from a charged particle microscope (601) onto a sample (6) arranged on a light-emitting member (500) that makes up at least a part of a sample base (600), and, in addition to obtaining charged particle microscope images by the light-emitting member (500) detecting charged particles transmitted through or scattered inside the sample (6), obtains optical microscope images by means of an optical microscope (602) while the sample (6) is still arranged on the sample platform (600).
Abstract:
A TEM grid provides posts having steps, the steps increasing the number of samples that can be attached to the grid. In some embodiments, each post includes a one sided stair step configuration. A method of extracting multiple samples includes extracting samples and attaching the samples to the different stair steps on the posts.
Abstract:
A sample holder assembly includes a sample tray, a base plate, a stage mount, and a calibration standard mounted onto the stage mount. Three mating structures on the bottom of the base plate mate with corresponding structures on a stage mount that is attached to the sample stage of the SEM. An optional contacting conductor provides electrical contact between the stage mount and the base plate so that charge generated on the sample by the electron beam can leave the sample through the sample conductive layer to the sample tray, to the base plate, to the stage mount, and through the grounded stage.
Abstract:
A particle-optical apparatus comprising: - A first source, for generating a first irradiating beam along a first axis; - A second source, for generating a second irradiating beam along a second axis that intersects the first axis at a beam intersection point, the first and second axes defining a beam plane, - A stage assembly for positioning a sample in the vicinity of the beam intersection point, provided with:
- A sample table to which the sample can be mounted; - A set of actuators, arranged so as to effect translation of the sample table along directions substantially parallel to an X-axis perpendicular to the beam plane, a Y-axis parallel to the beam plane, and a Z-axis parallel to the beam plane, said X-axis, Y-axis and Z-axis being mutually orthogonal and passing through the beam intersection point,
wherein the set of actuators is further arranged to effect: - rotation of the sample table about a rotation axis substantially parallel to the Z-axis, and; - rotation of the sample table about a flip axis substantially perpendicular to the Z-axis,
whereby the flip axis can itself be rotated about the rotation axis.
Abstract:
A method of ion implantation comprising: providing a plasma within a plasma region of a chamber; positively biasing a first grid plate, wherein the first grid plate comprises a plurality of apertures; negatively biasing a second grid plate, wherein the second grid plate comprises a plurality of apertures; flowing ions from the plasma in the plasma region through the apertures in the positively-biased first grid plate; flowing at least a portion of the ions that flowed through the apertures in the positively-biased first grid plate through the apertures in the negatively-biased second grid plate; and implanting a substrate with at least a portion of the ions that flowed through the apertures in the negatively-biased second grid plate.
Abstract:
An improved method for extracting and handling multiple samples for S/TEM analysis is disclosed. Preferred embodiments of the present invention make use of a micromanipulator that attaches multiple samples at one time in a stacked formation and a method of placing each of the samples onto a TEM grid. By using a method that allows for the processing of multiple samples, the throughput of sample prep in increased significantly.
Abstract:
Protein layers (1) repeating regularly in two dimensions comprise protein protomers (2) which each comprise at least two monomers (5), (6) genetically fused together. The monomers (5), (6) are monomers of respective oligomer assemblies (3), (4) into which the monomers are assembled to assembly of the protein layer. The first oligomer assembly (3) belongs to a dihedral point group of order O, where O equals (3), (4) or (6) and has a set of O rotational symmetry axes of order (2). The second oligomer assembly (4) has a rotational symmetry axis of order (2). Due to the symmetry of the oligomer assemblies (3), (4), the rotational symmetry axes of each second oligomer assembly (4) is aligned with one of said set of O rotational symmetry axes of a first oligomer assembly (3) with (2) protomers being arranged symmetrically therearound. Thus, an 2-fold fusion between the oligomer assemblies (3), (4) is produced and the arrangements of the rotational symmetry axes of the oligomer assemblies (3), (4) cause the protein layer to repeat regularly. The protein layer has many uses, for example to support molecular entities for biosensing, x-ray crystallography or electron microscopy.
Abstract:
A sample holder (102,150,151,153-157,160-163) used in SEM (scanning electron microscopy) or TEM (transmission electron microscopy) permitting observation and inspection at higher resolution. The common feature to SEM and TEM sample holders is that a sample containing liquid and placed under atmospheric pressure can be observed or inspected after a small amount of the sample is passed through a filter or a medicine is mixed with the sample. The holder has a framelike member (102a,150a) provided with an opening (102b,150b) that is covered with a film (101,150c,231,411,495,496). The film has a first surface on which a sample (315,414) is held. The thickness D of the film and the length L of the portion of the film providing a cover over the opening in the framelike member satisfy a relationship given by L/D