Abstract:
Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include an FET gate stack 18 located on an upper surface of a semiconductor substrate 12. The FET gate stack includes source and drain extension regions 28 located within the semiconductor substrate at a footprint of the FET gate stack. A device channel 40 is also present between the source and drain extension regions and beneath the gate stack. The structure further includes embedded stressor elements 34 located on opposite sides of the FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes a lower layer of a first epitaxy 36 doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy 38 doped semiconductor material located atop the lower layer. The lower layer of the first epitaxy doped semiconductor material has a lower content of dopant as compared to the upper layer of the second epitaxy doped semiconductor material. The structure further includes a monolayer of dopant located within the upper layer of each of the embedded stressor elements. The monolayer of dopant is in direct contact with an edge of either the source extension region or the drain extension region.
Abstract:
Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack (18) located on an upper surface of a semiconductor substrate (12). The at least one FET gate stack includes source and drain extension regions (28) located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel (40) is also present between the source and drain extension regions (28) and beneath the at least one gate stack (18). The structure further includes embedded stressor elements (33) located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes, from bottom to top, a first layer of a first epitaxy doped semiconductor material (35) having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, a second layer of a second epitaxy doped semiconductor material (36) located atop the first layer, and a delta monolayer of dopant located on an upper surface of the second layer. The structure further includes a metal semiconductor alloy contact (45) located directly on an upper surface of the delta monolayer (37).
Abstract:
A gate structure (200) for complementary metal oxide semiconductor (CMOS) devices includes a first gate stack (116) having a first gate dielectric layer (102) formed over a substrate (100), and a first metal layer (106) formed over the first gate dielectric layer. A second gate stack (118) includes a second gate dielectric layer (102) formed over the substrate and a second metal layer (110) formed over the second gate dielectric layer. The first metal layer is formed in manner so as to impart a tensile stress on the substrate, and the second metal layer is formed in a manner so as to impart a compressive stress on the substrate.
Abstract:
Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack located on an upper surface of a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. The structure further includes embedded stressor elements located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes, from bottom to top, a first layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, a second layer of a second epitaxy doped semiconductor material located atop the first layer, and a delta monolayer of dopant located on an upper surface of the second layer. The structure further includes a metal semiconductor alloy contact located directly on an upper surface of the delta monolayer.
Abstract:
Ein Verfahren zum Ersetzen von Halbleitermaterial durch Metall, Ersatzmetall-Gate-Feldeffekttransistoren (RMGFETs) und Ersatzmetallkontakte (RMCs) und Chips mit integrierten Schaltungen (ICs), welche die FETs und/oder RMCs umfassen. Eine strukturierte Halbleiterschicht, z.B. Silicium, wird auf einer Dielektrikumsschicht, z.B. eines geschichteten Gate-Dielektrikums, gebildet. Eine Feld-Dielektrikumsschicht füllt den Raum zwischen Formen in der strukturierten Halbleiterschicht. Auf die Formen wird Metall aufgebracht. Der Wafer wird getempert, um Halbleiter in jeder Form durch Metall zu ersetzen, um Metall-FET-Gate-Zonen oder Metallkontakte zu bilden.
Abstract:
Verfahren (100) zum Ersetzen von Halbleitermaterial durch Metall, wobei das Verfahren (100) Folgendes aufweist: Bilden einer strukturierten Halbleiterschicht (126) auf einer Dielektrikumsschicht (124); Bilden (106) einer Feld-Dielektrikumsschicht (144; 134, 136, 138) welche den Raum zwischen Formen auf der strukturierten Halbleiterschicht (126) füllt; Aufbringen (110) von Metall (170) auf die Formen (142); und Tempern (112) des Wafers (120), wobei das aufgebrachte Metall (170) in jeder der Formen (142) den Halbleiter ersetzt, wobei es sich bei den Formen um Silicium-Platzhalter und bei dem Metall (170) um Aluminium handelt, und wobei das Aufbringen (110) von Aluminium (170) das Strukturieren einer aufgebrachten Aluminiumschicht (170) in einem Aluminium-Abhebeverfahren aufweist; und das Tempern (112) des Wafers (120) ein Kurzzeittempern für zwei Stunden bei vierhundert Grad Celsius umfasst.
Abstract:
Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include an FET gate stack 18 located on an upper surface of a semiconductor substrate 12. The FET gate stack includes source and drain extension regions 28 located within the semiconductor substrate at a footprint of the FET gate stack. A device channel 40 is also present between the source and drain extension regions and beneath the gate stack. The structure further includes embedded stressor elements 34 located on opposite sides of the FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes a lower layer of a first epitaxy 36 doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy 38 doped semiconductor material located atop the lower layer. The lower layer of the first epitaxy doped semiconductor material has a lower content of dopant as compared to the upper layer of the second epitaxy doped semiconductor material. The structure further includes a monolayer of dopant located within the upper layer of each of the embedded stressor elements. The monolayer of dopant is in direct contact with an edge of either the source extension region or the drain extension region.
Abstract:
Es werden Halbleiterstrukturen mit eingebetteten Stressorelementen offenbart. Die offenbarten Strukturen umfassen einen FET-Gate-Stapel 18, der sich auf einer oberen Oberfläche eines Halbleitersubstrats 12 befindet. Der FET-Gate-Stapel umfasst den Source- und den Drain-Erweiterungsbereich 28, die sich in dem Halbleitersubstrat an einer Auflagefläche des FET-Gate-Stapels befinden. Zwischen dem Source- und dem Drain-Erweiterungsbereich und unterhalb des Gate-Stapels ist außerdem ein Bauelementkanal 40 vorhanden. Die Struktur umfasst weiter eingebettete Stressorelemente 34, die sich auf entgegengesetzten Seiten des FET-Gate-Stapels und in dem Halbleitersubstrat befinden. Jedes der eingebetteten Stressorelemente enthält eine untere Schicht eines ersten dotierten Epitaxie-Halbleitermaterials 36 mit einer Gitterkonstante, die sich von einer Gitterkonstante des Halbleitersubstrats unterscheidet und eine Verspannung in den Bauelementkanal überträgt, und eine obere Schicht eines zweiten dotierten Epitaxie-Halbleitermaterials 38, die sich auf der unteren Schicht befindet. Die untere Schicht des ersten dotierten Epitaxie-Halbleitermaterials weist im Vergleich mit der oberen Schicht des zweiten dotierten Epitaxie-Halbleitermaterials einen geringeren Dotierstoffgehalt auf. Die Struktur umfasst weiter eine Dotierstoff-Monoschicht, die sich in der oberen Schicht jedes der eingebetteten Stressorelemente befindet. Die Dotierstoff-Monoschicht steht mit einem Rand entweder des Source-Erweiterungsbereichs oder des Drain-Erweiterungsbereichs in direktem Kontakt.
Abstract:
Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack (18) located on an upper surface of a semiconductor substrate (12). The at least one FET gate stack includes source and drain extension regions (28) located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel (40) is also present between the source and drain extension regions (28) and beneath the at least one gate stack (18). The structure further includes embedded stressor elements (33) located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes, from bottom to top, a first layer of a first epitaxy doped semiconductor material (35) having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, a second layer of a second epitaxy doped semiconductor material (36) located atop the first layer, and a delta monolayer of dopant located on an upper surface of the second layer. The structure further includes a metal semiconductor alloy contact (45) located directly on an upper surface of the delta monolayer (37).