Abstract:
An apparatus for examining spectral characteristics of an object may include a chuck configured to support and releasably fix the object, wherein the chuck is larger than the object, a first light source assembly integral with the chuck and configured to illuminate a bottom surface of the object with light having a predetermined spectrum and intensity, and a transmission analysis unit for collecting and analyzing light transmitted through the object. The first light source assembly may include multiple and/or adjustable light sources. A second light source assembly may illuminate a top surface of the object, and a reflection analysis unit may collect resultant reflected light.
Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package that includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.
Abstract:
A color measurement device comprising a means for electronically recording a digital color image, a target holder extending from the recording means having a distal end, and a target at the distal end of the holder, the target having one or more reference color regions thereon.
Abstract:
An apparatus for holding a generally flat color sample in a plurality of fixed and repeatable positions in proximity with the optics of a portable color instrument with a uniform and repeatable force. The apparatus has a platform upon which the portable color instrument is secured, a sample stage with multiple index planes upon which a color sample is placed, and a device which urges a pressure foot against the color sample, thereby holding the color sample in position on the stage with a uniform and repeatable force.
Abstract:
A spectrophotometer for measuring a two-dimensional area or a spot area in a rather broad surface of a sample, where the spectrophotometer is provided with a camera for taking the picture of the sample surface. The picture is shown on a display screen, and the operator can move a window superimposed on the sample picture in the display screen by using a mouse or the like to a desired place on the sample surface. The sample stage on which the sample is mounted moves according to the movement of the mouse, whereby a spectrophotometric measurement of the desired place (two-dimensional area or the spot area) on the sample is facilitated.
Abstract:
A multi-angle panel holding device for use on colorimeters comprising a base plate, a rotary turret plate which defines an aperture set in the base plate, and a housing member which encloses a panel holder which is capable of free angular rotation in a vertical and/or horizontal plane relative to the direction of incident light from the colorimeter.
Abstract:
A liquid sample introduction system for a plasma spectrometer includes a sample container for holding a liquid sample, a surface acoustic wave (SAW) nebulizer, arranged to receive a liquid sample from the sample container, an electronic controller for supplying electrical power to the SAW nebulizer so as to produce a surface acoustic wave on a surface of the SAW nebulizer, for generating an aerosol from the supplied sample liquid, and an aerosol transport arrangement for receiving the aerosol from the SAW nebulizer and carrying it into a plasma or flame of a spectrometer. The electronic controller is further configured to control the electrical power to the SAW nebulizer so as to permit adjustment of the aerosol parameters, and to control the aerosol transport arrangement so as to permit adjustment of the aerosol delivery into the plasma or flame of the spectrometer.
Abstract:
A spectrophotometric instrument (1) for the quantitative measurement of an optical property of an analyte in a sample cell (4). The spectrophotometric instrument (1) comprises an instrument housing (2a, 2b) for a source of electromagnetic radiation and a detector; an optical pot (3) for accommodating the sample cell (4) having a flexible restraining cradle (6).
Abstract:
A spectral-characteristic acquisition apparatus and a method of obtaining spectral characteristics. The spectral-characteristic acquisition apparatus includes a conveyor including a first conveyance roller pair disposed in a conveyance direction in which an object is conveyed and a second conveyance roller pair disposed downstream from the first conveyance roller pair in the conveyance direction, a sensor to detect that the object has reached the second conveyance roller pair, circuitry to control the second conveyance roller pair to drive by a predetermined amount with a driving force greater than a driving force of the first conveyance roller pair upon detecting that the object has reached the second conveyance roller pair by the sensor and to stop driving, and a color data obtainer to obtain color data from the object at a position where the object stops moving. In the spectral-characteristic acquisition apparatus, the circuitry estimates a spectral characteristic of the object.
Abstract:
A transmission spectroscopy device can direct light into a sample, and determine properties of the sample based on how much light emerges from the sample. The device can use a cell to contain the sample, so that the size of the cell defines the optical path length traversed by light in the sample. To ensure accuracy in the measurements, it is beneficial to calibrate the device by measuring the size of the cell periodically or as needed. To measure the size of the cell, the device can perform a transmission spectroscopy measurement of a known substance, such as pure water, to produce a measured absorbance spectrum of the known substance. The device can subtract a known absorbance spectrum of the known substance from the measured absorbance spectrum to form an oscillatory fringe pattern. The device can determine the size of the cell from a period of the fringe pattern.