Abstract:
A light emitting diode load board includes a substrate, a first dielectric layer, a second dielectric layer and a first conductive pad and a second conductive pad. The second dielectric layer includes a first structure part, a second structure part and a third structure part. The first dielectric layer is disposed on the substrate. The first structure part is disposed on the first dielectric layer and has a first sidewall. The second structure part is disposed on the first structure part and has a second sidewall. The third structure part is disposed on the second structure part and has N sidewalls. The second sidewall is more prominent than the first sidewall. The first sidewall, the second sidewall and the N sidewalls define the first etched part, and the part of the first dielectric layer is exposed from the first etched part. The first conductive pad is disposed in the first etched part. The second conductive is disposed on the second dielectric layer, covers part of the second dielectric and exposes the open of the first etched part.
Abstract:
One of the embodiments for a package substrate discloses a molding compound having plurality of metal pillar with middle portion embedded therein; a top end of the metal pillar protrudes above the molding compound; a bottom end of the metal pillar protrudes below the molding compound; a bottom RDL is configured on bottom of the molding compound; the RDL has a plurality of top metal pad and a plurality of bottom metal pad; a density of the plurality of bottom metal pad is higher than the density of the plurality of top metal pad; each metal pillar metal pad is electrically coupled to a corresponding first top metal pad.
Abstract:
Reliability is improved for the mechanical electrical connection formed between a grid array device, such as a pin grid array device (PGA) or a column grid array device (CGA), and a substrate such as a printed circuit board (PCB). Between adjacent PCB pads, a spacing pattern increases toward the periphery of the CGA, creating a misalignment between pads and columns. As part of the assembly method, columns align with the pads, resulting in column tilt that increases from the center to the periphery of the CGA. An advantage of this tilt is that it reduces the amount of contractions and expansions of columns during thermal cycling, thereby increasing the projected life of CGA. Another advantage of the method is that it reduces shear stress, further increasing the projected life of the CGA.
Abstract:
A method for forming a pass-through layer of an interposer of a packaged semiconductor device in which conducting structures are extended between first and second ends of a casing. The conducting structures are subsequently encapsulated in a molding compound to form a molded bar, and the molded bar is sliced to obtain the pass-through layer. The pass-through layer has conducting vias, each corresponding to a sliced section of one of the conducting structures. The cost of pass-through layers formed in this manner may be less than that of comparable silicon or glass pass-through layers.
Abstract:
A bottom package substrate is provided that includes a plurality of metal posts that electrically couple through a die-side redistribution layer to a plurality of die interconnects. The metal posts and the die interconnects are plated onto a seed layer on the bottom package substrate.
Abstract:
A printed circuit board (PCB) a method for processing PCB and an electronic apparatus are provided. The method for processing PCB may include: forming a hole in the PCB, wherein the PCB includes a metal matrix and at least two substrate layers, at least one of the at least two substrate layers has an geoelectric layer thereon; the metal matrix is fixed in a slot provided its the substrate, the formed hole contacts with both the geoelectric layer and the metal matrix; and providing conductive substances in the hole, with the conductive substances in the hole being in contact with the inner geoelectric layer and the metal matrix, so that the inner geoelectric layer and the metal matrix are in conduction with each other. The solutions of the embodiments of the application are beneficial to improve reliability of connection between the geoelectric layer and the metal matrix of the PCB, and improve transmission performance of a high frequency signal.
Abstract:
Some embodiments relate to micro vias in printed circuit boards (PCBs). In an example, a PCB may include a PCB substrate and a micro via. The micro via may extend between opposing surfaces of the PCB substrate and may have a diameter less than or equal to about 100 microns. In another example, a method of forming micro vias in a PCB may include forming a through hole in a PCB substrate of the PCB. The method may also include positioning a pillar that is electrically conductive within the through hole. The method may also include backfilling the through hole around the pillar with an epoxy backfill.
Abstract:
A high-frequency module includes a lower base member having a recess part formed in an upper face thereof, and having a base metal part formed on a lower face thereof that is to be grounded, an upper substrate disposed inside the recess part of the lower base member, a semiconductor device mounted on an upper face of the upper substrate, a first ground line connected to the semiconductor device and formed on the upper substrate, and a ground metal part connected to the base metal part and disposed in the lower base member, wherein the ground metal part is connected to the first ground line on the upper substrate.
Abstract:
This disclosure provides systems, methods and apparatus for three-dimensional (3-D) through-glass via inductors. In one aspect, the through-glass via inductor includes a glass substrate with a first cavity, a second cavity, and at least two through-glass vias. The through-glass vias include metal bars that are connected by a metal trace. The metal bars and the metal trace define the inductor, and each cavity is at least partially filled with magnetic material. The magnetic material can include a plurality of particles having an average diameter of less than about 20 nm. The first cavity can be inside the inductor and the second cavity can be outside inductor. In some implementations, the first and the second cavity can be vias that extend only partially through the glass substrate.
Abstract:
A circuit board assembly includes first and second circuit boards that each have a substrate and a conductive circuit layer positioned on the substrate. The first and second circuit boards are arranged such that the conductive circuit layers face each other across a gap. Thermal conductor pillars extend lengths across the gap between the conductive circuit layers of the first and second circuit boards. The thermal conductor pillars include opposite first and second ends that are engaged in thermal contact with the conductive circuit layers of the first and second circuit boards, respectively. The thermal conductor pillars provide thermal pathways for heat to travel between the first and second circuit boards.