Abstract:
A spectral characteristic obtaining apparatus including a light irradiation unit configured to emit light onto a reading object; a spectroscopic unit configured to separate at least a part of diffused reflected light from the light emitted onto the reading object by the light irradiation unit into a spectrum; and a light receiving unit configured to receive the diffused reflected light separated into the spectrum by the spectroscopic unit and to obtain a spectral characteristic. The light receiving unit is configured to be a spectroscopic sensor array including plural spectroscopic sensors arranged in a direction, and the spectroscopic sensors include a predetermined number of pixels arranged in the direction to receive lights with different spectral characteristics from each other.
Abstract:
A wavelength-tunable interference filter comprising a first substrate, a second substrate facing the first substrate, a first reflective film provided on the first substrate, a second reflective film provided on the second substrate, the second reflective film facing the first reflective film, a first electrode provided on the first substrate, and a second electrode provided on the second substrate, the second electrode facing the first electrode, wherein the first electrode includes a first electrode layer and a second electrode layer, the first electrode layer has a first in-plane internal stress which is compressive, and the second electrode layer has a second in-plane internal stress which is tensile.
Abstract:
A spectrometry device includes a wavelength variable interference filter, a filter driving unit, an imaging element which obtains color images corresponding to light with a red wavelength, light with a green wavelength, and light with a blue wavelength, respectively, and a composition unit which generates a composite image in which the red image, the green image, and the blue image are composited, the filter driving unit causes the wavelength variable filter to change the red wavelength every time when the red image is obtained, causes the wavelength variable filter to change the green wavelength every time when the green image is obtained, and causes the wavelength variable filter to change the blue wavelength every time when the blue image is obtained.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
A spectroscopic measurement apparatus includes an actuator that is driven by applying a drive voltage, a gap detector that detects a dimension of a gap, and a voltage control section including a feedback loop that controls the drive voltage depending on a detection result of the gap detector. The voltage control section includes a comparator that outputs a voltage signal at a High level VH if an absolute value of a deviation between a drive amount of the actuator and a setting value of the drive amount exceeds a predetermined threshold based on the detection result after a predetermined time elapses from the start of driving of the actuator.
Abstract:
An electric field enhancement element includes a metal fine structure layer configured including a metal fine structure smaller in size than a wavelength of incident light, a mirror layer adapted to reflect light having passed through the metal fine structure layer, a magnetooptic material layer disposed between the metal fine structure layer and the mirror layer, and adapted to cause at least one of a Faraday effect and a Cotton-Mouton effect, and a magnetic field generation device adapted to apply a magnetic field to the magnetooptic material layer.
Abstract:
A hyperspectral Raman imaging system having the ability to focus on excitation laser beam over a relatively wide field of view due to the use of a lens array, in particular a microlens array. Hyperspectral selection is provided in one embodiment through the use of dual-axis controlled dielectric filtration. Methods for analyzing materials with the system are disclosed. The device or system can be used in generally any application where investigation of materials is required.
Abstract:
A sensor arrangement including a light source, a first optical element, a second optical element, a first photo detector, and a second photo detector. The light source is optically coupled to the first optical element that is optically coupled to the second optical element. The first photo detector is optically coupled to the first optical element for detecting a first component of the part of the light which is not transmitted by the second optical element, and the second photo detector is optically coupled to the second optical element for detecting a second component of the part of the light which is transmitted by the second optical element. One of the first and the second optical elements is an optical filter and the other is a sensor element, where the sensor element or the filter is tunable.
Abstract:
A spectrometry apparatus includes a wavelength variable interference filter emitting light of various predetermined wavelengths; a roll shutter imaging element having pixels accumulating electric charges when exposed to light, and forming one frame by photodetection for each pixel block including pixels with a predetermined time delay for each pixel block, in which the imaging element accumulates electric charges in a photodetection period, and outputs a detection signal in response to the accumulated electric charges in a non-photodetection period; and a spectroscopic controller controlling the wavelength change driving of the emitted light of the wavelength variable interference filter. For the one frame, the spectroscopic controller starts the wavelength change driving at an end timing of the photodetection period of a final pixel block for which the photodetection process is performed at the end.
Abstract:
An optical module includes a wavelength variable interference filter that selects light of a predetermined wavelength from incident light, and can change the wavelength of emitted light; a global shutter imaging element that accumulates electric charges while being exposed to the emitted light, and outputs a detection signal in response to the accumulated electric charges; an imaging element controller for setting a photodetection period during which the electric charges are accumulated in the imaging element, and a standby period during which the electric charges accumulated in the imaging elements are reset; and a spectroscopic controller for controlling the wavelength change driving of the emitted light. The imaging element controller sets the duration of the standby period to a minimum drive time for changing the wavelength or greater. The spectroscopic controller starts the wavelength change driving at the start of the standby period.