Abstract:
A spectral characteristic acquisition device includes a light irradiation part configured to irradiate an object with light, a diffraction part configured to diffract light reflected from the object to provide diffracted light, a light-receiving part configured to receive the diffracted light and output a signal based on an amount of the diffracted light, a calibration color index configured to include a color with a known spectral characteristic, and an operation part configured to calculate a spectral characteristic of the object from a signal output from the light-receiving part by using a predetermined transformation matrix and calibrate the transformation matrix by using the calibration color index.
Abstract:
A system and method of high-speed microscopy using a two-photon microscope with spectral resolution. The microscope is operable to provide two- to five-dimensional fluorescence images of samples, including two or three spatial dimensions, a spectral dimension (for fluorescence emission), and a temporal dimension (on a scale of less than approximately one second). Two-dimensional (spatial) images with a complete wavelength spectrum are generated from a single scan of a sample. The microscope may include one of a multi-beam point scanning microscope, a single beam line scanning microscope, and a multi-beam line scanning microscope. The line scans may be formed using one or more of curved mirrors and lenses. The multiple beams may be formed using one of a grating, an array of lenses, and a beam splitter.
Abstract:
A light radiating portion (11a, 11b, 12, 51, 52) radiates light with wavelength λ1 having predetermined absorptivity for an object (16) and light with wavelength λ2 having smaller absorptivity for the object (16) than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion (17) receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion (18) generates information used for detection of the object (16) at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion (17). An output portion (53) outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion (11a, 11b, 12, 51, 52) and information generated by the measuring portion (18).
Abstract:
A method and system for linear spectral dispersion comprising passing an incoming electromagnetic signal through a compound prism consisting of two prisms in opposite orientation, where the two prisms are selected to provide a linearly varying output angle over a broad spectral region.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object. In one aspect, the hyperspectral imaging system includes a fore optic with optics for acquiring and projecting an image from a remote object, a scannable slit mechanism with a plurality of slits for receiving the projected image, where the projected image simultaneously illuminates two or more of the plurality of slits, a spectrometer for receiving and dispersing images passing through the two or more simultaneously-illuminated slits, and a two-dimensional image sensor for recording images received from the spectrometer, where the images received from different slits are recorded on different sets of detection elements of the two-dimensional image sensor.
Abstract:
The present invention relates to a spectrometer including a diopter (11); capturing means (15, 18) at said diopter (11) of an interferogram (12) originating from two interference beams (F1, F2) and forming interference lines (13) along the transverse axis (Ox) of the interferogram (12) within the plane (xOy) of the diopter (11), said capturing means (15, 18) including a network (18) of detection elements (19) so arranged to detect the spatial distribution of said interferogram (12), characterized in that said network (18) of detection elements (19) is two-dimensional and in that at least a portion of said capturing means (15, 18) and said interferogram (12) are tilted with regard to each other along the transverse axis (Ox) of the interferogram (12). The present invention also relates to a spectroscopic imaging device, including means for emitting two interference beams (F1, F2), and to such a spectrometer.
Abstract:
A spectroscopic measurement device includes a variable wavelength interference filter capable of selectively emitting light with a predetermined wavelength out of incident light, and changing the wavelength of the light to be emitted, a light receiving element adapted to output a detection signal corresponding to a light exposure in response to an exposure to the light emitted from the variable wavelength interference filter, a detection signal acquisition section adapted to obtain a plurality of detection signals different in the light exposure from each other with respect to each of the wavelengths, and a selection section adapted to select the detection signal having a highest signal level out of signal levels of the detection signals obtained, which are lower than a maximum signal level corresponding to a saturated light exposure of the light receiving element.
Abstract:
A hyperspectral/multispectral imager comprising a housing is provided. At least one light source is attached to the housing. An objective lens, in an optical communication path comprising originating and terminating ends, is further attached to the housing and causes light to (i) be backscattered by the tissue of a subject at the originating end and then (ii) pass through the objective lens to a beam steering element at the terminating end of the communication path inside the housing. The beam steering element has a plurality of operating modes each of which causes the element to be in optical communication with a different optical detector in a plurality of optical detectors offset from the optical communication path. Each respective detector filter in a plurality of detector filters covers a corresponding optical detector in the plurality of optical detectors thereby filtering light received by the corresponding detector from the beam steering element.
Abstract:
Various embodiments of apparatuses, systems and methods are described herein for a spectrometer comprising at least two dispersive elements configured to receive at least one input optical signal and generate two or more pluralities of spatially separated spectral components, at least a portion of the at least two dispersive elements being implemented on a first substrate; and a single detector array coupled to the at least two dispersive elements and configured to receive and measure two or more pluralities of narrowband optical signals derived from the two or more pluralities of spatially separated spectral components, respectively.
Abstract:
A device for detecting gas concentrations includes a movable coded filter. An optical element is positioned to receive gas filtered light and spectrally separate the gas filtered light. A photo detector is positioned to receive the spectrally separated light through slits in the moveable coded filter to provide an AC signal representative of a selected gas.