-
公开(公告)号:US12209904B2
公开(公告)日:2025-01-28
申请号:US17778387
申请日:2021-06-21
Applicant: ams Sensors Singapore Pte. Ltd.
Inventor: Peter Roentgen , Kotaro Ishizaki , Javier Miguel Sanchez
Abstract: An optical sensor. The optical sensor comprises a substrate, a Fabry-Perot interferometer, and first and second photodetectors. The Fabry-Perot interferometer comprises a first mirror and a second mirror, and is mounted on the substrate such that light is transmitted through the interferometer to the substrate. The first and second photodetectors are configured to detect light transmitted through the etalon and the substrate. The first photodetector is sensitive to a first wavelength range, and the second photodetector is sensitive to a second wavelength range, and wherein the first and second wavelength ranges each correspond to a different mode of the interferometer.
-
公开(公告)号:US12170300B2
公开(公告)日:2024-12-17
申请号:US18310769
申请日:2023-05-02
Applicant: VIAVI Solutions Inc.
Inventor: Georg J. Ockenfuss
IPC: H01L31/02 , G01J3/02 , G01J3/26 , G01J3/28 , G01J3/36 , G01J3/51 , G02B5/28 , H01L27/14 , H01L27/146 , H01L31/0216 , H01L33/46 , H01L33/60 , H10K50/856 , H10K59/38
Abstract: A device may include a multispectral filter array disposed on the substrate. The multispectral filter array may include a first metal mirror disposed on the substrate. The multispectral filter may include a spacer disposed on the first metal mirror. The spacer may include a set of layers. The spacer may include a second metal mirror disposed on the spacer. The second metal mirror may be aligned with two or more sensor elements of a set of sensor elements.
-
公开(公告)号:US20240332326A1
公开(公告)日:2024-10-03
申请号:US18740259
申请日:2024-06-11
Inventor: Atsushi ISHIKAWA , Yasuhisa INADA
CPC classification number: H01L27/1462 , G01J3/26 , G01J3/2823 , G01J3/36 , G02B5/201 , G02B5/28 , H01L27/14627 , H01L27/14645 , H04N25/135
Abstract: A light detecting device includes: a filter array including filters two-dimensionally arrayed and an image sensor including light detection elements. Each of first and second filters included in the filters includes a first reflective layer, a second reflective layer, and an intermediate layer therebetween and has a resonance structure having resonant modes whose orders are different from each other. A refractive index and/or a thickness of the intermediate layer in the first and second filters is different depending on the filter. A transmission spectrum of each of the first and second filters has local maximum value of transmittance at each of wavelengths included in a wavelength region, and the wavelengths correspond to the resonant modes, respectively. The image sensor is disposed at a position where the image senor receives passing light that passes through the filter array, to detect components in the wavelengths included in the passing light.
-
公开(公告)号:US20240223719A1
公开(公告)日:2024-07-04
申请号:US18424716
申请日:2024-01-26
Applicant: Rebellion Photonics, Inc.
Inventor: Robert Timothy KESTER , Nathan Adrian HAGEN
IPC: H04N5/33 , G01J3/02 , G01J3/28 , G01J3/36 , G01J5/00 , G01J5/0804 , G01N21/3504 , G02B5/20 , G06V10/10 , G06V10/143 , G06V10/147 , G06V20/10 , H04N23/45
CPC classification number: H04N5/33 , G01J3/0232 , G01J3/0256 , G01J3/2803 , G01J3/36 , G01J5/0014 , G01J5/0804 , G01N21/3504 , G02B5/201 , G02B5/208 , G06V10/143 , G06V10/147 , G06V10/17 , G06V20/10 , H04N23/45 , G01J2003/2826 , G01J2005/0077 , G01N2021/3531 , G01N2201/0221
Abstract: In one embodiment, an infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including an optical focal plane array (FPA) unit. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. Said optical system and said processing unit can be contained together in a data acquisition and processing module configured to be worn or carried by a person.
-
公开(公告)号:US20240219235A1
公开(公告)日:2024-07-04
申请号:US18490717
申请日:2023-10-19
Applicant: LITE-ON SINGAPORE PTE. LTD.
Inventor: LAY-THANT KO , RUI-TAO ZHENG , MON-OO WIN
IPC: G01J3/36 , G01N33/483 , G01S17/04
CPC classification number: G01J3/36 , G01N33/4833 , G01S17/04 , G01N2021/3568 , G01N2201/125
Abstract: The present disclosure relates to an optical sensing module, a system and a method for operating the optical sensing system. The optical sensing module includes a light emitter that emits a sensing light in a specific wavelength range and a photodiode unit. The photodiode unit includes a first photodiode used to sense a first wavelength light, a second photodiode used to sense a second wavelength light, and a third photodiode used to sense a third wavelength light. The optical sensing module implements a proximity sensor by operations of the second photodiode and the third photodiode, or a biometric sensor by operations of the first photodiode, the second photodiode, and the third photodiode. The photodiode unit receives a reflected light from an object to be detected so as to determine if the object is proximal, and then determine whether or not the proximal object is human skin.
-
公开(公告)号:US12014538B2
公开(公告)日:2024-06-18
申请号:US18132309
申请日:2023-04-07
Applicant: Sony Group Corporation
Inventor: Morio Ogura , Hirofumi Sumi
IPC: G06V20/10 , A01G7/00 , G01J3/28 , G01J3/36 , G01J3/51 , G01N21/01 , G01N21/17 , G01N21/25 , G01N21/31 , G01N21/359 , G01N21/84 , G01N33/00 , G06Q30/00 , G06Q50/02 , G06T7/00 , H04N13/204 , H04N23/11
CPC classification number: G06V20/188 , A01G7/00 , G01J3/36 , G01J3/513 , G01N21/251 , G01N21/255 , G01N21/314 , G06Q30/00 , G06Q50/02 , G06T7/0004 , H04N13/204 , H04N23/11 , G01J2003/2826 , G01N2021/0118 , G01N2021/1797 , G01N2021/3155 , G01N21/359 , G01N2021/8466 , G01N33/0098 , G06T2207/30128 , G06T2207/30188
Abstract: The present disclosure relates to methods and systems for obtaining image information of an organism including a set of optical data; calculating a growth index based on the set of optical data; and calculating an anticipated harvest time based on the growth index, where the image information includes at least one of: (a) visible image data obtained from an image sensor and non-visible image data obtained from the image sensor, and (b) a set of image data from at least two image capture devices, where the at least two image capture devices capture the set of image data from at least two positions.
-
177.
公开(公告)号:US11940325B2
公开(公告)日:2024-03-26
申请号:US17870051
申请日:2022-07-21
Applicant: The Penn State Research Foundation
Inventor: Abdalla R. Nassar , Alexander J. Dunbar , Edward W. Reutzel
IPC: G01J3/02 , B22F10/20 , B22F10/25 , B22F10/28 , B22F12/44 , B22F12/45 , B22F12/90 , B33Y50/02 , G01J3/36 , G01J3/443 , B22F10/30 , B22F10/366 , B22F10/38 , B33Y10/00 , G01J3/12
CPC classification number: G01J3/36 , B22F10/20 , B22F10/25 , B22F10/28 , B22F12/44 , B22F12/45 , B22F12/90 , B33Y50/02 , G01J3/0208 , G01J3/443 , B22F10/30 , B22F10/366 , B22F10/38 , B33Y10/00 , G01J2003/1213
Abstract: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
-
公开(公告)号:US20240098214A1
公开(公告)日:2024-03-21
申请号:US18472891
申请日:2023-09-22
Applicant: REBELLION PHOTONICS, INC.
Inventor: Robert Timothy KESTER , Nathan Adrian HAGEN
IPC: H04N5/33 , G01J3/02 , G01J3/28 , G01J3/36 , G01J5/00 , G01J5/0804 , G01N21/3504 , G02B5/20 , G06V10/10 , G06V10/143 , G06V10/147 , G06V20/10 , H04N23/45
CPC classification number: H04N5/33 , G01J3/0232 , G01J3/0256 , G01J3/2803 , G01J3/36 , G01J5/0014 , G01J5/0804 , G01N21/3504 , G02B5/201 , G02B5/208 , G06V10/143 , G06V10/147 , G06V10/17 , G06V20/10 , H04N23/45 , G01J2003/2826 , G01J2005/0077 , G01N2021/3531 , G01N2201/0221
Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays. One of the at least two detector arrays comprises a cooled mid-wavelength infra-red FPA. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
-
公开(公告)号:US20240060820A1
公开(公告)日:2024-02-22
申请号:US18180736
申请日:2023-03-08
Applicant: VERIFOOD, LTD.
Inventor: Damian GOLDRING , Dror SHARON , Guy BRODETZKI , Amit RUF , Menahem KAPLAN , Sagee ROSEN , Omer KEILAF , Uri KINROT , Kai ENGELHARDT , Ittai NIR
IPC: G01J3/10 , G01J3/02 , G01N21/25 , G01J3/12 , G01J3/28 , G01J3/36 , G01J5/02 , G01J5/10 , G01N33/02 , G01J3/26 , G01J3/45
CPC classification number: G01J3/108 , G01J3/10 , G01J3/0259 , G01N21/255 , G01J3/0205 , G01J3/0256 , G01J3/0264 , G01J3/12 , G01J3/0208 , G01J3/0262 , G01J3/0272 , G01J3/28 , G01J3/36 , G01J5/0265 , G01J5/10 , G01N33/02 , G01J3/26 , G01J3/2803 , G01J3/45 , G01J3/0229 , G01J2003/1226 , G01J3/0291 , G01J2003/123 , G01J2003/1239
Abstract: A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
-
公开(公告)号:US20230204497A1
公开(公告)日:2023-06-29
申请号:US18111740
申请日:2023-02-20
Applicant: Apple Inc.
Inventor: Miikka M. Kangas , Mark Alan Arbore , David I. Simon , Michael J. Bishop , James W. Hillendahl , Robert Chen
IPC: G01N21/27 , G01N21/35 , G01N21/47 , G01J3/32 , G01J3/36 , G01J3/433 , G01J3/447 , G01J3/02 , G01J3/42
CPC classification number: G01N21/276 , G01N21/35 , G01N21/474 , G01N21/4785 , G01J3/32 , G01J3/36 , G01J3/433 , G01J3/447 , G01J3/0286 , G01J3/42 , G01N2021/4709 , G01N2201/0221 , G01N2201/12723 , G01N21/49
Abstract: This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
-
-
-
-
-
-
-
-
-