Abstract:
The invention provides materials and methods for forming coatings on substrates. The coatings are durable and resistant to damage from environmental, chemical, thermal, and/or radiative sources. In some embodiments, the coatings comprise bilayers of electrostatically charged materials. The bilayers are created by alternately applying solutions comprising water-soluble, electrostatically charged materials. Durability is imparted to the coatings by the formation of crosslinks that are formed within and between layers after deposition of the coatings.
Abstract:
The present invention relates to a method for attaching nanomaterials by using a Langmuir-Blodgett method, wherein a Langmuir-Blodgett (LB) film, which is comprised of nanomaterials, is formed from a dispersed solution where the nanomaterials are stably dispersed in a volatile organic solvent, and then the nanomaterials of the LB film are transferred to a substrate or a holder. The method according to the present invention may be desirably applied to fabrication of a nanopattern structure, or manufacture of a probe, as a mechanical and electric device, for detecting signals such as surface or chemical signals.
Abstract:
A method of forming a self-assembled film on a substrate includes the steps of providing film precursors on the substrate, wherein the film precursors are maintained in an amorphous state. A dispensing member containing a pH adjusting medium is provided and the pH adjusting medium is dispensed onto the substrate wherein the pH adjusting medium promotes crystallization of the film precursor into a self-assembled film. The pH adjusting medium may either increase or decrease the pH of the film precursors so as to initiate the self-assembly of the film precursors into a crystalline film.
Abstract:
A method of treating a Langmuir-Blodgett's film which includes one or more built-up monomolecular films of an organic dye is disclosed. The method comprises subjecting the Langmuir-Blodgett's film to a magnetic field to cause the molecules of the organic dye to be aggregated in the J-state.
Abstract:
This invention generally relates to a method for preparing and transferring a monolayer or thin film. In particular this present invention is an improved version of the Langmuir-Schaefer technique for preparing and transferring a monolayer or thin film, incorporating in situ thermal control of the substrate during the transfer process.
Abstract:
The field of the invention relates to systems and methods for surface treatments, and more particularly to systems and methods for surface treatments, modifications or coatings using micro- and nano-structure particles for both super-hydrophobic and super-oleophobic properties. In one embodiment, a method of treating surfaces to impart both super-hydrophobic and super-oleophobic properties includes the steps of pre-treating a substrate surface; assembling dual-scale nanoparticles onto the surface of the substrate; and treating the dual-scale nanoparticle coated surface with SiCl4 to cross-link the nanoparticles to each other and to the surface of the substrate creating a robust nano-structured topographic surface having both super-hydrophobic and super-oleophobic properties.
Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
Abstract:
A Langmuir-Blodgett (LB) film forming apparatus has a packing unit for orientating and packing a sample which is a composition for forming a monomolecular film developed on a subphase stored in a first tank, a sampling unit for sampling the orientated and packed monomolecular film on a substrate, and an outer casing enclosing the packing unit and sampling unit. The packing unit has a second tank in which a circulating solution is stored and the first tank is disposed in the solution. A temperature of the circulating solution in the second tank is controlled by a first controller and a temperature of atmosphere enclosed by the casing is controlled by a second controller. The first and second controllers are synchronously operated. The substrate is disposed above the subphase in a vertical attitude. The sampling unit includes a pressure detector for detecting a pressure of the packed monomolecular film and the packing unit includes a barrier driving means which is operatively connected to the pressure detector so that the movement of the barrier stops when a detected pressure reaches a predetermined value.
Abstract:
There is provided a process for the production of built up films by the stepwise adsorption of individual monolayers. The process comprises forming a first compact ordered monolayer on a polar solid substrate by adsorption of molecules at a solid fluid interface, and chemically activating the monolayer coated solid in order to introduce polar sites for the anchoring at a further monolayer on the top of the first one, and continuing, if desired, until the desired number of monolayers, one on the other, is obtained. The molecules used are elongated or flattened ones having at one end or side a polar moiety and at the other a non-polar one, which is subsequent to the monolayer formation chemically activated to render it polar and thus adapted to react with another such polar/non polar molecule, and so on.There may also be provided monolayers of such compounds and there may be inserted a desired functional group at the upper surface of the monolayer molecules to obtain a surface with desired surface properties. The non polar group can also be a non terminal one which is subsequently reacted.The multilayer films are of value in a wide range of applications, like ultrathin film components in microelectronics, for the production of artificial membranes, in optical devices, ultrathin photoresists, surface coatings with adhesive properties, molecular films useful in solar energy conversion and any other device where ordered ultrathin monolayer or multilayer films are useful and required.