Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, a hyperspectral/multispectral imaging device includes a lens configured to receive light backscattered by an object, a plurality of photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a plurality of beam splitters in optical communication with the lens and the photo-sensors, where each beam splitter splits the light received by the lens into a plurality of optical paths, each path configured to direct light to a corresponding photo-sensor through the bandpass filter corresponding to the respective photo-sensor.
Abstract:
An apparatus measuring optical characteristics including position detection is disclosed. A processor is coupled to a display. A first optical sensor makes a first measurement and a second optical sensor makes a second measurement. A source of illumination provides illumination in the IR range it and the first optical sensor determine a minimal distance between the apparatus and an external object such that illumination emitted by the source is not received by the first optical sensor when the apparatus is less than the minimal distance from the external object. A position of the apparatus with respect to an object and an optical property of light received by the apparatus are determined. A transparent member having a thickness less than the minimal distance may be provided through which the source provides illumination and receives illumination external to the apparatus.
Abstract:
A color measurement apparatus that performs color measurement on a printout includes a measurement unit that can perform color measurement on a target by changing a light-receiving angle, and a controller that causes the measurement unit to perform color measurement at the light-receiving angle corresponding to an index value representing unique luster of the printout.
Abstract:
A method for detecting unknown materials, such as drugs. A first location is surveyed using a video capture device to identify a second location comprising an unknown material. The second location is interrogated using SWIR spectroscopic and/or imaging methods to generate a SWIR hyperspectral image. The SWIR hyperspectral image is analyzed to associate the unknown material with a known drug material. A system for detecting unknown materials, such as drugs comprising a first collection lens for collecting interacted photons from a first location and a visible imaging device for generating a visible image. A second collection lens may collect a plurality of interacted photons from a second location and a tunable filter may filter the interacted photons. A spectroscopic imaging device may detect the interacted photons and generate a SWIR hyperspectral image. A processor may analyze the SWIR hypespectral image to associate an unknown material with a known material.
Abstract:
A handheld or portable detection system with a high degree of specificity and accuracy, capable of use at small and substantial standoff distances (e.g., greater than 12 inches) is utilized to identify specific substances and mixtures thereof in order to provide information to officials for identification purposes and assists in determinations related to the legality, hazardous nature and/or disposition decision of such substance(s). The system uses a synchronous detector and visible light filter to enhance detection capabilities.
Abstract:
The present invention may include loading a diagnostic sample onto a sample stage, focusing light from an illumination source disposed on a multi-axis stage onto the diagnostic sample, collecting a portion of light reflected from a surface of the diagnostic sample utilizing a detector, wherein the illumination source and the detector are optically direct-coupled via an optical system, acquiring a set of diagnostic parameters indicative of illumination source position drift from the diagnostic sample, determining a magnitude of the illumination source position drift by comparing the acquired set of diagnostic parameters to an initial set of parameters obtained from the diagnostic sample at a previously measured alignment condition, determining a direction of the illumination source position drift; and providing illumination source position adjustment parameters configured to correct the determined magnitude and direction of the illumination source position drift to the multi-axis actuation control system of the multi-axis stage.
Abstract:
An apparatus measuring optical characteristics including position detection is disclosed. A processor is coupled to a display. A first optical sensor makes a first measurement and a second optical sensor makes a second measurement. A source of illumination provides illumination in the IR range it and the first optical sensor determine a minimal distance between the apparatus and an external object such that illumination emitted by the source is not received by the first optical sensor when the apparatus is less than the minimal distance from the external object. A position of the apparatus with respect to an object and an optical property of light received by the apparatus are determined. A transparent member having a thickness less than the minimal distance may be provided through which the source provides illumination and receives illumination external to the apparatus.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A charged particle beam system for processing substrates is disclosed, comprising a charged particle column, combination infrared radiation and visible light illumination and imaging subsystems, in-vacuum optics, and a precision stage for supporting and positioning the substrate alternately under the charged particle column and the imaging system. The axes of the charged particle column and imaging system are offset to enable much closer working distances for both imaging and beam processing than would be possible in a single integrated assembly. A method for extremely accurately calibrating the offset between the column and imaging system is disclosed, enabling beam processing at precisely-determined locations on the substrate. The imaging system is capable of locating sub-surface features on the substrate which cannot be seen using the charged particle beam. Two illumination modes are disclosed, enabling both bright-field and dark-field imaging in infrared radiation and visible light.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.