Abstract:
Systems for adjusting for irregular movement during spectral imaging are provided herein. Exemplary systems include: a spectrograph measuring a plurality of spectrographic data sets; a camera capturing images, a processor communicatively coupled to the spectrograph and the camera; and a memory coupled to the processor, the memory storing instructions executable by the processor to perform a method comprising: receiving a plurality of spectrographs for a series of respective locations and the images corresponding to the respective locations; generating a continuous image using the images; identifying a respective corresponding position in the continuous image for each spectrograph, such that each spectrograph is a measurement of the respective position; and associating each spectrograph with the respective position.
Abstract:
A random grating based compressive sensing wideband hyperspectral imaging system comprising a front imaging component, an optical splitting component, more than two branches, and a computer, with each branch having an exit pupil transformation component and a compressive spectral imaging component. The system is based on compressive sensing theory, makes use of the correlation between spectra, increases compression rate on the spectral dimension, realizes three-dimensional compressive collection of wideband spectral image data, and greatly reduces data collection amount. The system is capable of measuring spectral image information on a wideband spectrum with a single exposure, and may obtain high spatial resolution and high spectral resolution by means of designing the random gratings on the various spitting paths.
Abstract:
A spectrometer includes a first spectroscopic unit and a second spectroscopic unit. A light passing part, a reflection part, a common reflection part, a dispersive part, and a light detection part included in the first spectroscopic unit are arranged along a first reference line when viewed in a Z-axis direction. A light passing part, a reflection part, the common reflection part, a dispersive part, and a light detection part included in the second spectroscopic unit are arranged along a second reference line when viewed in the Z-axis direction. The first reference line and the second reference line intersect with one another.
Abstract:
A simple and compact apparatus, and a method, for determining the characteristics of a number of fluids used in the truck and automotive industries including coolant, bio-diesel, gas-ethanol and diesel engine fluid (DEF). The apparatus includes a sample container providing optical paths of different lengths for making measurements on a sample. The dual path length design allows the apparatus to capture both NIR and UV spectral ranges. The qualitative and quantitative properties of the fluid under test are compared to test results under normal conditions or to the properties of unused fluid. Two light sources are used within a spectrometer with each source being associated with a different optical path length.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, an imaging device includes at least one objective lens configured to receive light backscattered by an object, a plurality of pixel array photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a beam steering assembly in optical communication with the at least one objective lens and the photo-sensors. The beam steering assembly directs light received by at least one objective lens from the tissue of a subject to at least one pixel array photo-sensor in the plurality of pixel array photo-sensors.
Abstract:
An imaging transform spectrometer, and method of operation thereof, that is dynamically configurable “on demand” between an interferometric spectrometer function and a broadband spatial imaging function to allow a single instrument to capture both broadband spatial imagery and spectral data of a scene. In one example, the imaging transform spectrometer is configured such that the modulation used for interferometric imaging may be dynamically turned ON and OFF to select a desired mode of operation for the instrument.
Abstract:
Disclosed is a spectrum measuring apparatus for shortening such a measurement time period for an object being measured including two or more mutually different measurement portions as is required for the spectrum measurements of the lights from individual measurement portions. The spectrum measuring apparatus comprises a slit group having two or more slits, a spectroscope for separating the lights extracted by the slit group, for the individual slits, and a measuring unit for measuring the intensities of the individual components, which are separated by the spectroscope, for the slits. The individual slits extract such ones of the lights coming from an object being measured including two or more mutually different measurement portions, as come from the individual measurement portions.
Abstract:
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Abstract:
A spark optical emission spectrometer comprising: a spark source for causing spark induced emission of light from a sample; a single entrance slit; a toroidal mirror for directing the light through the single entrance slit; a plurality of diffraction gratings for diffracting light that has been directed through the entrance slit by the mirror, whereby the plurality of diffraction gratings are simultaneously illuminated; and at least one array detector for detecting the diffracted light from the plurality of diffraction gratings, wherein the minor is for directing the light through the entrance slit such that light from different regions in the spark source is spatially separated in an image of the light at the gratings whereby a first diffraction grating is preferentially illuminated with light from a first region of the spark source and simultaneously a second diffraction grating is preferentially illuminated with light from a second region of the spark source.
Abstract:
An analysis apparatus includes a plasma generation unit and an optical analysis unit. The plasma generation unit generates initial plasma by momentarily energizing a target substance to be turned into a plasma state, and maintains the target substance in the plasma state by irradiating the initial plasma with an electromagnetic wave for a predetermined period of time. The optical analysis unit identifies the target substance based on information with respect to emission intensity during a period from when the emission intensity reaches a peak due to the initial plasma until when the emission intensity increases and reaches approximately a constant value due to electromagnetic wave plasma maintained by the electromagnetic wave, or information with respect to emission intensity after the electromagnetic wave irradiation is terminated.