Abstract:
An improved cryogenic specimen holder for imaging and analysis facilitates imaging at very high tilt angles with a large field of view. A retractable specimen holder tip protects the specimen during transport. An optimized Dewar design is positioned at a fixed, tilted angle with respect to the axis of the holder, providing a means of continuously cooling the specimen irrespective of the high tilt angle and amount of liquid nitrogen present in the vessel. The Dewar neck design reduces entrapment of nitrogen gas bubbles and its shape prevents the spilling of liquid nitrogen at high tilt angles. The specimen holder has a retractable tip that completely encapsulates the specimen within a shielded environment internal to the specimen holder body. The cooling and specimen transfer mechanisms reduce thermal drift and the detrimental effects of vibrations generated by both the evaporation of liquid nitrogen present in the Dewar and other environmental effects.
Abstract:
Provided is an inspection apparatus or observation apparatus enabling appropriate inspection or observation of a sample in an easy-to-use manner, using a charged-particle technique and an optical technique. Specifically, provided is an inspection or observation apparatus including: a first casing forming at least part of a first space constituting at least part of a region through which a primary charged-particle beam emitted from a charged-particle irradiation section reaches a sample, the first space capable of being maintained in a vacuum state; a second casing provided on the first casing to form at least part of a second space capable of storing the sample therein; a partition wall section for partitioning the first space and the second space from each other, the partition wall section disposed so as to be coaxial with the charged-particle irradiation section when the sample is irradiated with the primary charged-particle beam from the charged-particle irradiation section; and an optical observation section for casting light onto the sample and detecting light from the sample from the same direction as the charged-particle irradiation section.
Abstract:
An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (
Abstract:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical systems; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
Abstract:
A charged particle beam instrument is offered which has a specimen pre-evacuation chamber. An outflow flow rate adjusting valve (70) adjusts the flow rate of gas exhausted from the specimen pre-evacuation chamber (20) under control of controller (82). The controller (82) for making a decision as to whether the difference between a first pressure in the pre-evacuation chamber (20) before the adjusting valve (70) is controlled to the first degree of opening and a second pressure in the pre-evacuation chamber (20) after the adjusting valve (70) has been controlled to the first degree of opening is greater than a first reference value.
Abstract:
A specimen positioning device (100) is for use in or with a charged particle beam system having a specimen chamber (1) and has: a base (10) provided with a hole (12) in operative communication with the specimen chamber (1); a specimen holder (20) movably mounted in the hole (12) and having a first portion (22) and a second portion (24); and a first portion support portion (40) supporting the first portion (22) in the specimen chamber (1). The second portion (24) supports the first portion (22) via a resilient member (34).
Abstract:
An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (
Abstract:
An ion implantation system provides ions to a workpiece positioned in a vacuum environment of a process chamber on a cooled chuck. A pre-chill station within the process chamber has a chilled workpiece support configured to cool the workpiece to a first temperature, and a post-heat station within the process chamber, has a heated workpiece support configured to heat the workpiece to a second temperature. The first temperature is lower than a process temperature, and the second temperature is greater than an external temperature. A workpiece transfer arm is further configured to concurrently transfer two or more workpieces between two or more of the chuck, a load lock chamber, the pre-chill station, and the post-heat station.
Abstract:
Ion sources, systems and methods are disclosed. In some embodiments, the ion sources, systems and methods can exhibit relatively little undesired vibration and/or can sufficiently dampen undesired vibration. This can enhance performance (e.g., increase reliability, stability and the like). In certain embodiments, the ion sources, systems and methods can enhance the ability to make tips having desired physical attributes (e.g., the number of atoms on the apex of the tip). This can enhance performance (e.g., increase reliability, stability and the like).
Abstract:
A charged particle beam apparatus includes: a sample chamber; a sample stage; an electron beam irradiation system for irradiating the sample with an electron beam; a focused ion beam irradiation system for irradiating the sample with a focused ion beam; a sample stage drive unit having a rotational axis orthogonal to at least one of an irradiation axis of the electron beam irradiation system and an irradiation axis of the focused ion beam irradiation system; and a sample transporting mechanism for transporting the sample to the sample stage. The sample transporting mechanism includes a transportation path provided in the sample stage drive unit in a direction parallel to the rotational axis of the sample stage drive unit, and is configured to transport the sample to the sample stage through the transportation path.