Abstract:
An instrument producing a charged particle beam according to the present invention is provided with: a charged particle source; a plurality of first electrodes disposed along a direction of irradiation of charged particles from the charged particle source; a plurality of insulation members disposed between the first electrodes; and a housing mounted around the plurality of first electrodes. The housing is formed from an insulating solid material, and includes a plurality of second electrodes disposed at positions in proximity to the plurality of first electrodes. At least one of the plurality of second electrodes is electrically connected to at least one of the plurality of first electrodes, each of the plurality of second electrodes having the same potential as the potential of the proximate one of the first electrodes.
Abstract:
An object of the present invention is to provide a charged particle beam apparatus that effectively removes electrical charges from an electrostatic chuck.In order to achieve the above object, the charged particle beam apparatus of the present invention includes a sample chamber that maintains a space containing an electrostatic chuck mechanism (5) in a vacuum state; and in which the charged particle beam apparatus includes an ultraviolet light source (6) to irradiate ultraviolet light within the sample chamber, and a irradiation target member irradiated by the ultraviolet light; and the irradiation target member is placed perpendicular to the adsorption surface of the electrostatic chuck.
Abstract:
The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface.
Abstract:
A charged particle beam apparatus for processing an object using a charged particle beam includes a charged particle lens in which an array of apertures, through each of which a charged particle beam passes, is formed; a vacuum container which contains the charged particle lens; and a radiation source configured to generate an ionizing radiation; wherein the apparatus is configured to cause the radiation source to pass the ionizing radiation through the array of apertures in a state in which a pressure in the vacuum container is changing.
Abstract:
A mask cover according to one embodiment of the present invention comprises a frame body having an opening at the center, a conductive earth plate installed on the frame body such that its end protrudes into the opening of the frame body, an earth pin provided on the end of the earth plate and electrically connected to the earth plate, and a conductive cover part surrounding the earth pin such that the tip end of the earth pin protrudes and a gap is present between the cover part and the earth pin.
Abstract:
The electrical charging by a primary electronic is inhibited to produce a clear edge contrast from an observation specimen (i.e., a specimen to be observed), whereby the shape of the surface of a sample can be measured with high accuracy. An observation specimen in which a liquid medium comprising an ionic liquid is formed in a thin-film-like or a webbing-film-like form on a sample is used. An electron microscopy using the observation specimen comprises: a step of measuring the thickness of a liquid medium comprising an ionic liquid on a sample; a step of controlling the conditions for irradiation with a primary electron on the basis of the thickness of the liquid medium comprising the ionic liquid; and a step of irradiating the sample with the primary electron under the above-mentioned primary electron irradiation conditions to form an image of the shape of the sample.
Abstract:
In an accelerating tube which uses a conductive insulator, there is a possibility that the dopant concentration on a surface of the conductive insulator becomes non-uniform so that the surface resistance of the conductive insulator becomes non-uniform. Accordingly, a circumferential groove is formed on the inner surface of the conductive insulator accelerating tube in plural stages, and metal is metalized along inner portions of the grooves. When the resistance of a specific portion on the surface of the accelerating tube differs from the resistance of an area around the specific portion, the potential of the metalized region on the inner surface of the accelerating tube becomes a fixed value and hence, the potential distribution on the inner surface of the accelerating tube in the vertical direction can be maintained substantially equal without regard to the circumferential direction.
Abstract:
A scanning electron microscope and an optical-condition setting method are provided. The optical condition allows the suppression of a lowering in the measurement and inspection accuracy caused by the influence of electrification, even if there are a large number of measurement and inspection points. A pattern on a sample is measured based on the detection of electrons by scanning the sample surface with an electron beam. A change in measurement values relative to the number of measurements is determined from the measurement values at a plurality of measurement points on the sample, and the sample-surface electric field is controlled so that the inclination of the change becomes equal to zero, or becomes close to zero.
Abstract:
A method of preventing a charge accumulation in the manufacturing process of a semiconductor device is provided. The method includes: forming a material layer on a substrate; patterning (or processing) the material layer; and forming a graphene layer before patterning the material layer, wherein the graphene layer is formed on a surface of the material layer or on a surface of the substrate under the material layer. The substrate may be an insulation substrate. In addition, the substrate may have a stacked structure including a plurality of layers.
Abstract:
An inductively coupled radio frequency plasma flood gun having a plasma chamber with one or more apertures, a gas source capable of supplying a gaseous substance to the plasma chamber, a single-turn coil disposed within the plasma chamber, and a power source coupled to the coil for inductively coupling radio frequency electrical power to excite the gaseous substance in the plasma chamber to generate plasma. The inner surface of the plasma chamber may be free of metal-containing material and the plasma may not be exposed to any metal-containing component within the plasma chamber. The plasma chamber may include a plurality of magnets for controlling the plasma and an exit aperture to enable negatively charged particles of the resulting plasma to engage an ion beam that is part of an associated ion implantation system. Magnets are disposed on opposite sides of the aperture used to manipulate the electrons of the plasma.