Abstract:
One embodiment of this fastening apparatus comprises a cap with a passage through the length of the cap. This cap is received by the upper panels of a body. The embodiments of this fastening apparatus may have two or more upper panels that form a recess. The body also has a lower region with a passage. The upper panels are flexible and can translate to retain the cap within the recess. A threaded member is disposed in the passage of the body. This cap may be fabricated of graphite in one instance.
Abstract:
One embodiment of this fastening apparatus comprises a cap with a passage through the length of the cap. This cap is received by the upper panels of a body. The embodiments of this fastening apparatus may have two or more upper panels that form a recess. The body also has a lower region with a passage. The upper panels are flexible and can translate to retain the cap within the recess. A threaded member is disposed in the passage of the body. This cap may be fabricated of graphite in one instance.
Abstract:
A kinematic electrode mount is provided for an ion implanter in which an electrode insert member having an electrode body portion which defines an aperture, is inserted into an electrode support frame. In one embodiment, a first kinematic alignment pin of the insert member engages a first, groove-shaped kinematic alignment surface of the electrode support frame to align the first alignment pin in two orthogonal directions relative to the electrode support frame. In addition, a second kinematic alignment pin of the insert member engages a second kinematic alignment surface of the electrode support frame to align the insert member in a rotational orientation relative to the electrode support frame. A plurality of flanges of the insert member engage the electrode support frame to retain the insert member in the aligned position and to electrically couple the electrode insert member to the electrode support frame. A spring positioned between the electrode insert member and the electrode support frame biases the electrode insert member in the aligned and retained position relative to the electrode support frame. In another embodiment, the electrode support frame has alignment pins and the insert member has alignment slots.
Abstract:
In an electrode assembly, an electrode holder has a forward end thereof affixed coaxially to an electrode tip. An attachment member is affixed to the holder rearwardly of the electrode. A retaining assembly includes an outer cup component, an inner cup component and a magnet therein. An electrical lead is connected to the inner cup component. The electrode assembly fits coaxially into the retaining assembly with the attachment member adjacent to and retained by the magnet. The electrode holder is seated in electrical contact with the inner cup component. The holder, cup components and attachment member are magnetically permeable, and separated in each assembly by insulators, so as to effect an outer magnetic shielding loop and an inner magnetic shielding loop.
Abstract:
The invention relates to charged particle beam generator comprising a charged particle source for generating a charged particle beam, a collimator system comprising a collimator structure with a plurality of collimator electrodes for collimating the charged particle beam, a beam source vacuum chamber comprising the charged particle source, and a generator vacuum chamber comprising the collimator structure and the beam source vacuum chamber within a vacuum, wherein the collimator system is positioned outside the beam source vacuum chamber. Each of the beam source vacuum chamber and the generator vacuum chamber may be provided with a vacuum pump.
Abstract:
A plasma processing apparatus includes a process chamber in which a substrate processing process is performed; an electrostatic chuck having a microcavity; a lower electrode disposed to be in contact with a lower surface of the electrostatic chuck; a high-frequency power supply applying high-frequency power to the lower electrode; a conductive supporter disposed to be spaced apart from a lower portion of the lower electrode and grounded thereto; and a discharge suppressor located between the lower electrode and the conductive supporter, having a gas supply flow path forming a portion of a gas supply line, and molded by three dimensional printing, wherein the gas supply flow path has a space portion having a length of 5 mm or less in a direction of an electric field formed by the high-frequency power and connecting upper and lower surfaces of the discharge suppressor.
Abstract:
The present disclosure relates to a process gas supplying unit configured to uniformly supply a process gas to each region of a substrate when a substrate is treated using plasma, and a substrate treating apparatus including the same. According to the present disclosure, the effect of improving the treating efficiency of the substrate may be obtained by uniformly supplying the process gas.
Abstract:
A chemical vapor deposition source that includes at least one plate to which first and second electrical connection posts are coupled. The chemical vapor deposition source also includes a filament having a first end and a second end. The first end of the filament is electrically connected to the first electrical connection post and the second end of the filament is electrically connected to the second electrical connection post. The chemical vapor deposition source further includes at least one filament holder electrically insulated from the at least one plate. The at least one filament holder holds a portion of the filament between the first end and the second end.
Abstract:
In one embodiment, a supporting case includes a lower case member and an upper case member. The mounting substrate is pinched between a lower cylindrical supporting portion and a upper cylindrical supporting portion. Peripheral regions of the mounting substrate that are on a peripheral side with respect to a part pinched between the lower cylindrical supporting portion and the upper cylindrical supporting portion are positioned in a space defined by a bottom plate portion, a lower peripheral-wall portion, and the lower cylindrical supporting portion of the lower case member and a top lid portion, an upper peripheral-wall portion, and the upper cylindrical supporting portion of the upper case member.
Abstract:
A cathode for an X-ray tube, an X-ray tube, a system for X-ray imaging, and a method for an assembly of a cathode for an X-ray tube include a filament, a support structure, a body structure, and a filament frame structure. The filament is provided to emit electrons towards an anode in an electron emitting direction, and the filament at least partially includes a helical structure. Further, the filament is held by the support structure which is fixedly connected to the body structure. The filament frame structure is provided for electron-optical focusing of the emitted electrons, and the filament frame structure is provided adjacent to the outer boundaries of the filament. The filament frame structure includes frame surface portions arranged transverse to the emitting direction, and the filament frame structure is held by the support structure.