Abstract:
A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.
Abstract:
A thin oil film having parylene irregular dendritic-like columns extending from one side to another exhibits hydrophobic properties that can be used as a corrosion resistant coating or water-repellant, biofouling resistant surface. This parylene-in-oil layer can be paired with an adjacent layer of solid parylene that it overlays or underlays. The solid parylene cross polymerizes with the parylene dendrites, keeping them in place as well as the oil film. The parylene dendrites are fabricated by chemical vapor deposition (CVD) of parylene over the oil layer, the dendrites self-forming from the bottom to the top. Continued CVD over the dendrites can produce a top layer of solid parylene. Etching the solid parylene away can result in a water repellant, anti-biofouling surface.
Abstract:
A method for plasma treating a target surface of a part, including: obtaining the target surface on the part; placing the part in a chamber of a plasma generator; evacuating the chamber to a pressure of between 10-6 and 10 mbar; injecting a suitable gas into the chamber until a pressure in the chamber of between 10-4 and 102 mbar is reached; generating an electric current discharge within the chamber, via an electric generator, in order to generate a plasma; exposing the target surface of the part to the plasma for a predefined period of time depending on the power of the electric current discharge, on the gas injected into the chamber and on the material of the target surface, so as to deteriorate the surface condition of the target surface in order to increase the roughness thereof to make the target surface mat or more mat.
Abstract:
A method for the production of nanoscopic and/or microscopic surface structures on a flat substrate is provided, wherein the surface structure of the substrate is changed through the use of an ion etching process. First, a coating that features a boundary surface-active substance with a concentration of 0.01 to 5 percent by weight is applied to the substrate. The coating applied to the substrate is subsequently transformed into a solid form, and the ion etching process is then performed.
Abstract:
The invention relates to a lubricant coating (5) for a medical injection device (1), comprising successively: —a bottom layer (50) in contact with the medical device surface (21) of the container to be lubricated, comprising a mixture of cross-linked and non-cross-linked poly-(dimethylsiloxane), —an intermediate layer (51) consisting essentially of oxidized poly-(dimethylsiloxane) and having a thickness comprised between 10 and 30 nm and, —a top layer (52) consisting essentially of non-cross-linked poly-(dimethylsiloxane) and having a thickness of at most 2 nm. The invention also relates to a medical injection device comprising such a lubricant coating, and a manufacturing process for said coating.
Abstract:
The invention relates to a cylindrical tube made of polymer material or glass, whose cylindrical inner wall includes a coating of hydrophobic particles having a surface with a peak-to-valley distance of between 100 nm and 50 μm; a process for manufacturing said tube by forming a coating on its inner wall including the steps of displacing a segment of a liquid composition of suspended coating particles within the tube at a constant controlled velocity of at least 2 cm/sec so as to drive a homogeneous liquid film on the inner wall of the tube, letting the solvent of the liquid composition evaporate and the suspended coating particles deposit on the inner wall of the tube, optionally, repeating the two previous steps at least once.
Abstract:
The invention relates to a method for forming a coating in the inner wall of a tube, including the following operations: moving a segment of a liquid composition of coating particles in suspension inside the tube at a constant controlled speed at least equal to 2 cm/s, so as to drive a homogeneous liquid film over the inner wall of the tube, and allowing the solvent of the liquid composition to evaporate and the coating particles in suspension to be deposited on the inner wall of the tube.
Abstract:
A method is provided for producing an adhesive material (1) for a medical application such as a dressing. The method includes at least one step for coating a first surface (2b) of any substrate (4), called receiving substrate, using a layer of previously coated silicone on an anti-adherent liner (3). The silicone layer is an adhesive gel (2). The method further includes, prior to the coating step, a corona treatment step for the surface of the adhesive silicone gel that is intended to coat the receiving substrate (4).
Abstract:
A laminate body includes a base material, a film-like or a membrane-like undercoat layer that is formed in at least a portion of the outer surface of the base material, and an atomic layer deposition film that is formed on a surface opposite to a surface coming into contact with the base material among both surfaces of the undercoat layer in the thickness direction thereof. At least a portion of precursors of the atomic layer deposition film bind to the undercoat layer, and the atomic layer deposition film is formed into a membrane shape covering the undercoat layer.
Abstract:
A wet coating method is described, which includes the following steps. A film coating is applied to at least one surface of a substrate using a wet process. A plasma-assisted filling treatment is performed on the film coating to crystallize the film coating into a film. The plasma-assisted filling treatment includes using a filling coating.