Abstract:
A circuit board unit includes a printed circuit board and a terminal block mounted on the printed circuit board and connecting a power module and an electrical wire together. The terminal block includes a terminal connection part to be directly connected to the power module, and a wire connection part to be connected to the electrical wire. In the printed circuit board, a hole having an orthographic projection area larger than that of the terminal connection part as viewed in plane is formed. The terminal connection part is positioned below or above the hole of the printed circuit board.
Abstract:
A battery module and a method of manufacture are provided. The battery module may include a printed circuit board (PCB) assembly. The PCB assembly may include a PCB designed to be disposed in a battery module for controlling operations of the battery module. The PCB may also include voltage sensing circuitry. In addition, the PCB assembly may include a bus bar cell interconnect. The bus bar cell interconnect may electrically couple batteries of the battery module. The PCB assembly may also include a voltage sense connection tab. The voltage sense connection tab may carry a voltage between a bus bar cell interconnect of the battery module and the voltage sensing circuitry on the PCB.
Abstract:
A pad structure includes an insulating layer; a first metal layer formed on one surface of the insulating layer and including an intermetallic compound layer of copper and tin or a tin layer; and a second metal layer formed on the first metal layer and including a gold layer.
Abstract:
The present disclosure relates to reducing unwanted RF noise in a printed circuit board (PCB) containing an RF device. An isolation filter is embedded in a PCB containing an RDF device. By placing the isolation filter as close as possible to the RF device in order to dramatically reduce unwanted RF noise due to unavoidable coupling between Vias and planes in the PCB structure.
Abstract:
Stacked flex cable assemblies and their manufacture are described. One assembly includes a first flex cable and a second flex cable electrically coupled to the first flex cable. The assembly also includes a connector electrically coupled to the first flex cable. The first flex cable is positioned between the connector and the second flex cable. Other embodiments are described and claimed.
Abstract:
A circuit assembly includes a substrate having a substrate electrical circuit, opposite top and bottom substrate surfaces, and a substrate hole extending through the substrate. The circuit assembly also includes a discrete component assembly electrically connected to the substrate electrical circuit and a support member attached to the discrete component. At least a portion of the discrete component is physically mounted in the substrate hole.
Abstract:
A circuit board assembly includes a printed circuit board (PCB), at least two laser diodes, a number of first bonding wires, at least two photo diodes and a number of second bonding wires. The PCB includes a mounting surface, a first connecting pad, and a second connecting pad, both the first connecting pad and the second connecting pad are positioned on the mounting surface. The at least two laser diodes and the driving chip mounted on the first connecting pad. The first bonding wires each electrically connects the laser diodes to the driving chip. The photo diodes and the transimpedance amplifier mounted on the second connecting pad. The second bonding wires each electrically connects the photo diodes to the transimpedance amplifier.
Abstract:
Disclosed herein is a method of manufacturing a printed circuit board, including; forming an electronic component including an electrode that is formed on at least one side of a body; forming terminals on an upper portion of the electrode and an upper portion of the body; providing a substrate in which a cavity is formed; mounting the electronic component formed with the terminals in the cavity of the substrate; and forming a buildup layer on an upper portion of the substrate and an upper portion of the electronic component.
Abstract:
An object of the present invention is to allow stress that may be applied to a semiconductor package to be suppressed, when the semiconductor package is mounted on a curved board. In a mount board 1, a semiconductor package 20 is mounted on a curved board 10 including a curved surface on at least a portion thereof. The curved board 10 includes a pedestal portion 13a disposed on a region of the curved surface portion where the semiconductor package 20 is mounted and having an upper surface thereof formed flat, and a plurality of pad portions 15a disposed on the flat surface of the pedestal portion 13a. The pedestal portion 13a is formed of an insulating material. The semiconductor package 20 is mounted on the pad portions 15a.
Abstract:
An assembled circuit comprising a substrate, a coil, a first conductive segment, a second conductive segment, a first through-hole connector and a second through-hole connector is disclosed. The first conductive segment is electrically connected to one end of the first through-hole connector, the other end of the first through-hole connector is electrically connected to one end of the second through-hole connector via the first conductive segment, and the other end of the second through-hole connector is electrically connected to the second conductive segment.