Abstract:
An insulation layer is formed on a ground layer. The insulation layer includes first and second regions for forming wiring layers. The impedance of a wiring layer formed on the second region is lower than that of a wiring layer formed on the first region. A signal line pattern is formed on the wiring layer on the first region of the insulation layer. A power supply plane is formed on the wiring layer on the second region of the insulation layer in order to feed power to the signal line pattern through a termination resistor connected to the signal line pattern.
Abstract:
The invention relates to electronics and can be used in construction of electronic units performing the reception and processing of signals of the satellite radio navigation systems (SRNS). The essence of the invention is that in an electronic unit comprising a multilayer printed-circuit card, the conductors intended for screening the corresponding linking signal conductor are disposed at both its external surfaces and are connected with the ground planes by means of metallized holes of interface connections made at least at the beginning and end of each screening wire to form a closed electric circuit.
Abstract:
An inductor device having plural spiral-shaped interconnection structures connected to each other and extending in plural power source layers, the power source layers being in different levels of a multilayer printed board. The printed board having first and second current loops. The loops share part of a common current path.
Abstract:
A multi-layered printed wiring board is provided that is capable of securing required wiring density even with a decreased number of wiring layers and reducing radiation noises. The multi-layered printed wiring board has at least three wiring layers each at least having at least one power supply line or a ground line, and another kind of line, said wiring layers each having an outer edge. A ground line is formed at the outer edge of at least one of the wiring layers. A basic power supply line is formed inside the ground line. At least one power supply line extends from the basic power supply line. A plurality of electronic parts are mounted on at least one of the wiring layers. The at least one power supply line is wired to mounting positions of the electronic parts via at least one of the wiring layers.
Abstract:
An inductor device having plural spiral-shaped interconnection structures connected to each other and extending in plural power source layers, the power source layers being in different levels of a multilayer printed board. The printed board having first and second current loops. The loops share part of a common current path.
Abstract:
A wiring board of the present invention is equipped with a laminated waveguide as a high-frequency signal transmission line. The laminated waveguide is composed of a dielectric substrate, a pair of main conductive layers laminated on the upper surface and the lower surface of the dielectric substrate, a plurality of via-holes extending in a thickness direction in the dielectric substrate so that they electrically connect the pair of the main conductive layers, and a sub-conductive layer provided in the dielectric substrate so that it is parallel to the main conductive layers and is electrically connected to the via-holes, the plurality of the via-holes form two rows extending in a signal transmitting direction with a mutual distance from each other, and in each row, the distance between adjacent via-holes is adjusted to less than 1/2 of a signal wavelength, a region surrounded with the pair of the main conductive layers and the two rows of the via-holes forms a signal transmitting region, and on both sides in the outside of the signal transmitting region, the sub-conductive layer is provided. The transmittting line by the laminated waveguide which is formed in this wiring board has especially excellent transmitting characteristics of high-frequency signals. In addition, since this wiring board can be easily produced by a laminating technology of ceramics, this wiring board also has excellent productivity.
Abstract:
An electronic component which is employed in the frequency range in the microwave band or above is mounted on a circuit board. The circuit board comprises two linear transmission line members, a ground electrode, and an electric insulating substrate provided with the transmission line members and the ground electrode on its major surface. The electronic component comprises external electrodes which are formed on its side surfaces. Holding patches which are formed on the lower surface of the electronic component are bonded to the ground electrode by solder members, thereby fixing the electronic component to the circuit board. At this time, small clearances are defined between the electronic component and the circuit board through the solder members, whereby the external electrodes are electromagnetically coupled with the transmission line members and the ground electrode through the clearances respectively. Thus, it is possible to obtain a mounting structure for an electronic component, which can suppress development of unnecessary inductance components.
Abstract:
In an SIP type module of the type wherein memory ICs are mounted to both surfaces of a substrate, the present invention provides a face package type memory module wherein packaging is made in an inclined direction in place of vertical packaging of the prior art technique and only the memory ICs mounted to the upper surface side of the substrate are deviated to the positions closer to the end portion of the substrate in order to drastically reduce the packaging height.
Abstract:
An acoustic surface wave filter element provided with two input and two output pins connected with the input and the output interdigital electrodes, respectively and an earth pin connected with a filter element shield casing is disposed on one surface of a circuit board, with the five pins extending through corresponding through holes in the circuit board to the other surface of the circuit board on which the pins are connected with corresponding conductive circuit patterns of the circuit board. The circuit patterns include a first signal pattern to be connected with one of the input pins, a first earth pattern connected with the other of the input pins, a second and a third signal pattern connected with one and another of the output pins, and a second earth pattern connected with the earth pin of the filter element. The first and the second signal pattern have end portions opposedly positioned to each other, and an earth pattern portion is positioned between the opposed end portions of the first and the second signal pattern to connect the first and the second earth pattern with each other. Portions of the patterns positioned beneath the filter element are arrayed symmetrically about an axis lying on the center of the terminal of the end portion of the first signal pattern and external between the second and third signal patterns.
Abstract:
A printed circuit board includes a first electrically conductive reference plane configured to distribute a first reference voltage applied thereto across a surface area of the first reference plane, and a second electrically conductive reference plane extending parallel to the first reference plane, and configured to distribute a second reference voltage applied thereto across a surface area of the second reference plane. A first layer is provided, which extends between the first reference plane and the second reference plane, and includes one or more first signal lines extending adjacent the first reference plane. The first layer is divided into: (i) a first region in which the one or more first signal lines are disposed, (ii) a second region containing an additional plane that is configured to receive a third voltage and has smaller surface area relative to the surface areas of the first and second reference planes, and (iii) a third region containing a dielectric layer. A second layer is provided, which extends between the first reference plane and the second reference plane, and includes one or more second signal lines extending adjacent the second reference plane. The second signal lines have linewidths that vary as a function of whether they are vertically aligned with the first region, the second region, or the third region.