Abstract:
A method 10 for making a multi-layer electronic circuit board 98 having at least one electrically conductive protuberance 15 which forms a nullvianull and which traverses through the various layers of the electric circuit board 98, and further having at least one interconnection portion 102 which supports a wide variety of components and interconnection assemblies.
Abstract:
In the manufacture of Printed Circuit (PC) boards, conductors are placed in a base layer of glass cloth. The conductors penetrate the thickness of the cloth and can be arranged to form a matrix or grid. The arrangement of cloth and conductors is then cured with resin with the wire lengths disposed within the cured board core. The wire lengths can be made flush with the board core surfaces and become the electrical conductors between circuitry on such surfaces. In one embodiment, the wire is removed leaving a finished hole ready for standard through-hole plating. These finished circuit boards can be stacked and laminated forming through, blind, or buried vias. One or more finished circuit boards with imbedded vias can be used as circuitry redistribution layers to avoid dense circuit patterns in applications such as in flip-chip mounting of integrated circuit chips. In another embodiment, the conductors are imbedded in the glass cloth with sufficient density to form a composite thick conductor. Other layers can then be laminated or built up on this composite and multiple vias can then be formed to the thick conductor using conventional techniques.
Abstract:
First and second electronic devices interconnected by a nonconductive nanoporous film, said film having metal-filled pores extending through the thickness of the film, such that each of said devices is contacted by the metal in at least several pores, wherein said film comprises a silicone polymer.
Abstract:
The inventive core for electrical connecting substrates, particularly for printed circuit boards and foil circuit boards, has an inner layer (I) with a columnar structure and on either side, metallic cover layers (A,A'), the columnar structure of the inner layer (I) comprising columns (9.1,9.2), which are regularly arranged, spaced from one another and from the cover layers (A,A'), being directed transversely to the service extension of the core and made from an electrically conductive material in a matrix (6) of an electrically insulating material. The cover layers (A,A') e.g. have electrical terminals (16,16', 17,17') in the form of through-plated blind holes (13,14) on selected columns (9) of the inner layer (I) and are structured in such a way that they have a regular pattern of terminals (16,16') on the facing cover layer and terminals (17,17') on the through-connections insulated from the cover layers, this grid pattern can have a size of approximately 0.5 mm.
Abstract:
In a metal-clad laminate the requirements concerning the mechanical strength are functionally separated from the circuit connection requirement, so as to be able to bring the circuit connection, particularly for signals, "closer" to the electrotechnical characteristics of the chips. For this purpose and without taking account of the mechanical strength of the substrate, the layout miniaturization is optimized. In place of a circuit board (MCM), a laminate which can be built up to a circuit board is produced. The inventive laminate comprises an extremely thin foil with a plurality of extremely small holes simultaneously etched in an etching process. The hole diameter can be reduced by almost an order of magnitude (up to 20 .mu.m), which permits a sub-100 .mu.m technology. Such a laminate is not used as a mechanical support and is only provided for signal guidance. The effect of the miniaturization can be seen in the diameter for the plated-through holes. With a hole diameter reduction there is an increase in the current path density, which gives over 10000 plated-through holes per dm.sup.2. A drawing shows the compression ratio compared with standard technology.
Abstract:
A ceramic substrate having a plurality of holes arranged regularly with a specified pitch can be used for an universal high density ceramic wiring board, wherein predetermined one or more holes among said plurality of holes are used as through holes for interconnecting both side circuits, and the remaining holes not used for a circuit are filled with an electrical insulating material.Said ceramic substrate of universal type can easily be produced inexpensively and within a short lead time, because said substrate requires no individual mold for each of various circuits to punch a green sheet and can be kept in stock as a fired ceramic substrate.
Abstract:
A high-density wired circuit board obtained by providing an auxiliary grid at the position of centroid of a main grid and by employing wiring in the inclined direction mainly instead of wiring in the XY directions mainly can make the space between wires and through-holes large without narrowing a wiring pitch.
Abstract:
An arrangement for constructing multi-layered printed circuits characterized by a first layer having top and bottom surfaces with the top surface including a plurality of parallel conductors divided into at least two conductor groups by a transversely oriented break across each conductor. The bottom surface further includes a plurality of parallel conductors arranged perpendicular to the conductors on the top surface and is also divided into at least two conductor groups by a transversely oriented break across each conductor. A plurality of holes extend through the first layer with, each hole adjacent to an intersecting conductor pair. A second layer including top and bottom surfaces and a plurality of plated-through holes has conductor pennants extending from selected holes in a first direction on the top surface and a second opposite direction on the bottom surface. A plurality of first and second layers are sandwiched together, with each hole of each layer in registration with the other and each conductor pennant contacting a respective first layer conductor. Conductor segments printed on the second layer top and bottom surfaces interconnect selected conductors between respective conductor groups. Additionally, two or more second layers are interconnected by via pins extending through the arrangement.
Abstract:
A printed circuit board of six planar layers has the layers separated by a dielectric of epoxy glass. The two central layer planes form a ground plane and a voltage plane. The two external planes and the internal planes involve series of microstrip signal lines of specially calculated widths and dielectric separations to provide an essentially 100 ohm characteristic impedance for the signal lines in reference to the ground and voltage planes.
Abstract:
A printed board comprising a plurality of through holes formed therein and located on intersecting points of an X-Y orthogonal basic grid, and an oblique conductor pattern, wherein conductors are formed along channels arranged in accordance with a principle that one conductor passes between adjacent grid points arranged in the X direction, while two or more conductors pass between adjacent grid points arranged in the Y direction, and each conductor obliquely extends in a zigzag line without contacting the grid points. Such conductor pattern ensures a high density and minimum length of wiring.