Abstract:
A hidden lead package device is configured to be placed between a leadless component such as a surface mount package (SMP) used to house a SAW device and a standard printed circuit board configured for solder joints in a leadless contact with the printed circuit board. The hidden lead device is made using materials having similar characteristic thermal expansion properties as that of the SMP and printed circuit board pads to which the hidden lead is affixed. The hidden lead extends across the underside of the SMP along the PCB surface. One end of the lead is brazed to an SMP pad and the opposite end is soldered to a communicating PCB pad. The brazing temperature is higher than the reflow temperature for the solder. The hidden lead device causes the relative movement between the leadless carrier and the printed circuit board to occur along a length of the hidden lead and thus minimizes tensional or compressive forces to the solder joints. Such an approach relieves the stress and resulting creep typically seen at solder joints when mounting leadless packages to printed circuit boards. In addition, by segregating the input and output pads and placing the hidden leads to ground pads between those of input and output pads, crosstalk rejection of the components is improved.
Abstract:
This package for integrated devices, to be fixed on supporting plates, in particular on printed circuits, comprises contact pins to be inserted in holes of the supporting plates and to be soldered thereto. To prevent overturning of the package, which may lead to short circuits among the components, at least some of the contact pins are provided with protruding portions defining abutments cooperating with the supporting plate to limit the inclination of the package with respect to the plate.
Abstract:
A printed circuit board is disclosed which comprises a plurality of non-through holes into thickness direction in one surface of the board, a plurality of through holes in some of the non-through holes to open through opposite surface of the board and having a smaller inside diameter than the non-through holes, a plurality of first conductive lands on the periphery of the openings of the non-through holes in one surface of the board, a plurality of second conductive lands on the periphery of the openings in opposite surface of the through holes and having the smaller outside diameter than the second lands on the periphery of the openings of the non-through holes, a conductor layer in inside wall of the non-through holes and the through holes for connecting the first lands in one surface and the second conductive lands in opposite surface of board, and conductive patterns formed in one surface and opposite surface of the board respectively, which invention is capable of including the great number of the conductive patterns as necessary for mounting the electric component such as PGA or HPC without multilayering the board or going around of the conductive patterns, because of the greater number of the spaces between the second lands can be formed in opposite surface.
Abstract:
An electronic component with lead terminals, includes an electronic component element, electrodes respectively formed on opposite end faces of the electronic component element, and lead terminals respectively connected to the electrodes for electrical conduction, and each of the lead terminals having a large width portion formed at one end of its small width tip portion, and the large width portions of the lead terminals being conductively connected to the electrodes of the electronic component element. The disclosure is also directed to a method of manufacturing such electronic component.
Abstract:
In this method of fabricating an electrical circuit assembly, a thick film hybrid substrate is held in an inverted position as apertured glass-ceramic beads are placed over the end leads on the substrate. A drop of liquid flux is then applied to the apertures to hold the beads in place. After the flux dries, the leads are inserted into plated-through holes in a circuit board, with the beads locating portions of the leads above the board. Following wave soldering of the board, the beads are fractured with a sharp instrument prior to a cleaning operation which removes bead parts from the soldered assembly. In this manner, the substrate is flexibly mounted in the board so that the substrate can be tilted without damaging it.
Abstract:
An electronic component is provided having mounting leads configured as concentric arcs centered about a desired axis of rotation. The leads may therefore be inserted into a mounting board, and the component rotated to a desired angle with respect to the surface of the mounting board. In some embodiments, one or more of the mounting leads is provided with tabs or other positioning elements to facilitate the positioning of the component at any of a number of selected angles relative to the mounting board.
Abstract:
An electrical connection between spaced and parallel mother and daughter boards including terminals secured to the mother board and projecting toward the daughter board having a pivot link arm with a daughter board-engaging member at the free end of the link arm and a daughter board spring contact. A number of terminals are secured to the mother board all facing in the same direction so that upon movement of the daughter board in a direction parallel to the mother board the links pivot the daughter board down toward the mother board and bring contact pads on the daughter board in engagement with the spring contacts.