Abstract:
A system for detecting blood in eggs in which a beam of substantially monochromatic light or at least light within a very narrow wavelength band in the region of 578 nanometers (nm) is passed through an egg to be tested. The band is continually shifted in wavelength a number of times per second between substantially the shortest and the mid-length wavelengths of the broader blood absorption band, i.e. 578 to 573 nm. In a preferred embodiment, this is effected by a Fabry-Perot type interference filter placed in a light beam and oscillated about an axis by an electromagnetic device. A photoelectric device senses the light transmitted by the egg and the output signal derived therefrom is compared with an oscillating signal transmitted in time with the oscillation of the filter. If one phase relation exists between such signals, the egg is rejected as having blood present therein and if an opposite phase relation exists, the egg is retained as clear.
Abstract:
Disclosed is a spectroscopic device, system, and method for measuring the concentration of one or more molecular species of interest in a gas, liquid or solid sample, where the device may be portable, may be commercially manufactured, and/or may be adapted to existing systems and/or integrated with new systems to provide optical gas sensing for such systems. The disclosed devices, systems, and methods can be particularly useful in monitoring the purity of, e.g., a certain gas species, including determining whether a gas mixture contains certain gas species above a set concentration limit.
Abstract:
A dual-comb spectrometer comprising two lasers outputting respective frequency combs having a frequency offset between their intermode beat frequencies. One laser acts as a master and the other as a follower. Although the master laser is driven nominally with a DC drive signal, the current on its drive input line nevertheless oscillates with an AC component that follows the beating of the intermode comb lines lasing in the driven master laser. This effect is exploited by tapping off this AC component and mixing it with a reference frequency to provide the required frequency offset, the mixed signal then being supplied to the follower laser as the AC component of its drive signal. The respective frequency combs in the optical domain are thus phase-locked relative to each other in one degree of freedom, so that the electrical signals obtained by multi-heterodyning the two optical signals are frequency stabilized.
Abstract:
An ultrahigh-resolution mid-infrared (MIR) dual-comb spectroscopy (DCS) measurement device includes a pump unit, a microring resonator (MRR) unit, a modulation unit, a splitting unit, a testing unit, a signal detection unit, a power balance unit, a reference detection unit and a spectral analysis unit. The measurement method includes: adjusting the laser emitted by the pump unit to the MRR unit; adjusting the modulation unit and performing dual-frequency modulation; generating two sets of MIR optical frequency combs (OFCs) with different repetition rates and splitting the MIR OFCs into the test light and the reference light; performing photoelectric conversion on the test light and injecting the test light to the spectral analysis unit; performing photoelectric conversion on the reference light and injecting the reference light to the spectral analysis unit; and performing Fourier transformation and data processing on test results to obtain absorption spectrum of the to-be-tested sample.
Abstract:
A device, and corresponding method, can include a pump light source configured to irradiate a target specimen. The device can also include a sensor configured to observe a probe speckle pattern based on light from a probe light source reflected from the target specimen. The device further may include a correlator configured to determine a material property of the target specimen by analyzing changes in images of the probe speckle pattern as a function of the irradiation with the pump light source. Advantages of the device and method can include much higher sensitivity than existing methods; the ability to use visible probe wavelengths for uncooled, low-cost visible detectors with high spatial resolution; and the ability to obtain target material properties without detecting infrared light.
Abstract:
Disclosed is an apparatus and method for processing a bio optical signal based on a spread spectrum scheme including a demodulator configured to collect a bio optical signal generated in response to an incident beam modulated based on a spreading code being scattered from a target analyte, and remove a noise from the bio optical signal by demodulating the bio optical signal based on the spreading code, wherein the bio optical signal has a correlation with the modulated incident beam.
Abstract:
A heterodyne optical spectroscopy system comprises a light source that acts as a local oscillator (LO); a beam splitting component that generates a reference beam from the LO; a signal component that generates a sample signal from a sample; a beam blocker that can turn off the sample signal to generate blank shots; a composite signal detection subsystem that detects a heterodyned signal that is a mix of the sample signal and a portion of the LO; a composite reference detection subsystem synchronized to the signal detection subsystem to detect a portion of the reference beam; and a processor that processes digital signals from the signal detection subsystem and the reference detection subsystem. A very versatile reference scheme is developed to treat different heterodyne spectroscopies in a unified way, which achieves optimal noise suppression.
Abstract:
A derivative spectroscopy system for achieving a tunable resolution of 2 nm or less in resolving spectral components of an input optical signal is provided so as to estimate derivative spectra of the input optical signal based on the resolved spectral components. In the system, a first dispersive-element structure spectrally decomposes the input optical signal into subband signals. A second dispersive-element structure receives part or all of the subband signals and spectrally decomposes the received subband signals to plural spectral components. A material having a temperature-variant refractive index is used to build the second dispersive-element structure, enabling a shift of center wavelength of each spectral component as small as 2 nm of less upon changing a temperature of the second dispersive-element structure. By obtaining three spectral-component sets obtained at three different predetermined temperatures with the center-wavelength shift of 2 nm or less, first- and second-order derivative spectra are obtained with good accuracy.
Abstract:
A comb source includes a continuous wave frequency source to provide a continuous wave radiation; a first modulator in optical communication with the continuous wave frequency source; a second modulator in optical communication with continuous wave frequency source; and a waveform driver in electrical communication with the first modulator and the second modulator. A process for producing an analyte spectrum includes producing a first comb from a continuous wave frequency and a first waveform; producing a reference comb and a probe comb from the first comb; subjecting a sample to the probe comb; producing a sample comb in response to subjecting the sample to the probe comb; producing a composite comb from the reference comb and the sample comb; producing a second comb from the continuous wave frequency and a second waveform; and combining the second comb and the composite comb to produce the analyte spectrum.