Abstract:
The invention discloses a via connection structure with compensative area on a reference plane. The substrate has several conductive layers isolated by the insulation layers. When two conductive lines formed on different conductive layers where a reference plane is sandwiched in, these two conductive lines are not electrical connected because of the insulation layers. Furthermore, a via connection structure is common used to connect these two conductive lines. When a non-conductive area, i.e. the compensative area, on the reference plane is overlapped with a portion of one conductive line and is close to the via connection structure, it compensates the capacitive effect of the via connection structure. By this compensative area and the variety of the via connection structure, the vertical connection between different layers has a well impedance-matched condition and transmits the signal correctly
Abstract:
A multilayer electronic substrate is manufactured by employed: a first conductor layer arranged on an insulating substrate; an insulator arranged on the first conductor layer; a resistor arranged on the insulator; and second conductor layers for sandwiching the resistor to be connected to this resistor. In this multilayer electronic substrate, the resistor is trimmed so as to adjust an electric characteristic of a circuit, and a portion of the first conductor layer, which corresponds to a trimming portion of the resistor, is constituted by a first insulating region.
Abstract:
In a memory module, a plurality of memories are mounted on a module base plate, impedance between Vref and Vss near each memory is coupled to Vss by a decoupling capacitor and a Vref plane to achieve low impedance configuration in a wide frequency range, Vref planes are individually provided for the respective memories, and the Vref planes are connected to each other by using a high impedance wire, or a high impedance chip part. Accordingly, a wiring technique for a module which allows effective reduction of self noise and propagation noise can be provided.
Abstract:
A multilayer printed circuit board (PCB) includes a substrate; a ground layer having edges which define a gap portion, the ground layer being provided on a bottom face of the substrate; and at least two signal traces and provided on a top face of the substrate so as to straddle the gap portion and so as to be substantially parallel to each other. The multilayer PCB also includes at least one ground trace provided between the at least two signal traces and on the top face of the substrate so as to straddle the gap portion.
Abstract:
A signal transmission structure suitable for a multi-layer circuit substrate comprising a core layer and at least a dielectric layer is provided. The signal transmission structure according to the present invention comprises a first via landing pad and a reference plane. The first via landing pad is disposed on a first surface of the core layer, and covering one end of the through hole of the core layer. The dielectric layer covers the first via landing pad and the first surface of the core layer. And the first reference plane is disposed above the dielectric layer, having a first opening disposed above one end of the through hole. Wherein, the area where the first reference plane is projected on the first surface of the core layer does not overlap with the area where the first via landing pad is projected on the first surface of the core layer.
Abstract:
A circuitized substrate designed to substantially eliminate impedance disruptions during passage of signals through signal lines of the substrate's circuitry. The substrate includes a first conductive layer with a plurality of conductors on which an electrical component may be positioned and electrically coupled. The pads are coupled to signal lines (e.g., using thru-holes) further within the substrate and these signal lines are further coupled to a second plurality of conductive pads located even further within the substrate. The signal lines are positioned so as to lie between the substrate's first conductive layer and a voltage plane within a third conductive layer below the second conductive layer including the signal lines. A second voltage plane may be used adjacent the first voltage plane of the third conductive layer. Thru-holes may also be used to couple the signal lines coupled to the first conductors to a second plurality of conductors which form part of the third conductive layer. A method of making the substrate, and an electrical assembly and information handling system (e.g., computer) utilizing the substrate are also disclosed.
Abstract:
A printed circuit board has separate first, second and third sections arranged in a predetermined direction. A connector is mounted at the first section. A noise cut filter is mounted at the second section and connected to the connector. An electronic circuit component is mounted at the third section and connected to the noise cut filter. An electrically conductive power source layer is formed within the printed circuit board at a position outside a peripheral section adjacent the second section. The noise cut filter is allowed to operate without receiving any influence of noise from the power source layer. Noise is sufficiently removed at the noise cut filter. Noise is suppressed to the utmost in electric signals in the connector. Radiation of noise is reliably reduced at the connector. Electromagnetic interference can be suppressed.
Abstract:
A wiring board comprising: a plate core having a first main surface and a second main surface; conductor layers including a conductor line; dielectric layers laminated alternately with said conductor layers on at least one of said first and second main surfaces; via conductors as defined herein; a signal through-hole as defined herein; a signal through-hole conductor as defined herein; a first path end pad as defined herein; a second path end pad as defined herein; a shield through-hole as defined herein; and a shield through-hole conductor as defined herein; wherein: a signal transmission path is formed as defined herein; at least one of said conductor layers is disposed on each of said first and second main surface sides; said surface conductor on said first main surface side and said conductor line form a strip line, a microstrip line, or a coplanar waveguide with constant characteristic impedance Z0; an inner surface of said shield through-hole is covered with said shield through-hole conductor; and an interaxis distance between said signal through-hole conductor and said shield through-hole conductor is adjusted as defined herein.
Abstract:
A method and an apparatus for improving the delivery and filtering of power to a semiconductor device is disclosed by organizing out interconnects (pins, balls, pads or other interconnects) used to carry power in a striped configuration that shortens the conductive path required between a power source and a semiconductor device and that reduces the resistance of that conductive path.
Abstract:
A chassis and associated telecommunication circuit card are disclosed. The chassis has heat dissipation and flame containment features while accommodating a high density of the circuitry cards. Embodiments include an inner housing with a double-layer middle floor dividing the chassis into top and bottom chambers. Each layer has partially aligned slots, and an air gap is provided between the two layers. Embodiments also include a double-layer mesh cover with an air gap existing between the two mesh layers. Projections and grooves are provided on the inner surfaces of the inner housing to receive circuit cards having a guide on one edge and a fin on another. The circuit card includes conductor structures such as multiple board layers with paired and segregated conductors. The circuit card also includes some components positioned to cooperate with the ventilation features of the chassis and includes some components chosen for low-power consumption or reduced flammability.