Abstract:
A multilayer capacitor (2) consisting of a capacitor body (1) and an interposer board (20) arranged underneath it, wherein a pair of land patterns are arranged on a front surface of the interposer board (20) for connection with a pair of terminal electrodes of the capacitor body (11) and (12), and a pair of external electrodes are arranged on a back surface of the interposer board (20) for connection with interconnect patterns (34) of a mounting board (33) by solder (35), the pair of land patterns and the pair of external electrodes being arranged on the interposer board (20) so that a direction of a line connecting the pair of land patterns and a direction of a line connecting the pair of external electrodes intersect perpendicularly.
Abstract:
A multi-layer electronic circuit board design 10 having selectively formed apertures or cavities 26 which have improved solder-wetting characteristics by causing a first insulating layer to separate from a portion of a first conductive layer of the multi-layer electronic circuit board 10 which allows for communication by and between some or all of the various component containing surfaces, and portions of the formed multi-layer electrical circuit board 10, which selectively allows components contained within and/or upon these portions and surfaces to be interconnected.
Abstract:
A semiconductor device and its manufacturing method with which the conductive balls can be prevented from falling off. In terms of the configuration, semiconductor chip 100 is mounted onto the principal surface of insulated substrate 102, and solder balls 108 serving as external connection terminals are mounted on the rear surface. Insulated substrate 102 has via holes 112 to fill with solder paste for mounting solder balls 108. Via holes 112 contain internal channels 304 on inner peripheral surface 302 in order to exhaust the gas generated when the solder is melted to the outside.
Abstract:
An electrically conductive circuit conductor 2 is disposed on an insulating resin substrate 1, an electrically conductive surface 3 of the circuit conductor is exposed from the resin substrate continuously in a longitudinal direction, and both side portions 4 of the conductive surface are covered and fixed by collar walls 5 of the resin substrate. A bus bar or an electrically conductive resin material is used as the circuit conductor 2. The bus bar 2 is insert-molded onto the resin substrate. The electrically conductive resin material is poured and solidified in a groove portion in the resin substrate. A contact terminal on a mating circuit side or electrical component side is brought into contact with the conductive surface of the circuit conductor 2. A second circuit board is laminated on the resin substrate, and an insertion hole for allowing the conductive surface of the circuit conductor 2 to be exposed is provided in the second circuit board, and the contact terminal is inserted in the insertion hole. Other contact terminals on the mating circuit side or electrical component side are brought into contact with circuits of the second circuit board.
Abstract:
Disclosed is a novel deformation-resistant structure of a portable device, capable of reducing an electric failure by decreasing a distortion which occurs in a soldered portion between a printed circuit board of the portable device and an electric part mounted on the board due to a mechanical stress such as drop or pressure. Through slits are formed in positions in a printed wiring plate, which correspond to bosses having prepared holes disposed at the corners of a casing. By inserting screws into the prepared holes through the through slits, the printed circuit board is mounted in the casing. Although the casing is deformed when an external mechanical stress is applied to the casing, the screw and the boss can slide along each of the through slits. Thus, a deformation amount of the printed circuit board is not caused or becomes smaller than that of the casing.
Abstract:
A pair of soldering irons are fixed to a sliding plate at a predetermined interval. The soldering irons are integrally moved so as to reciprocate in a rectangular direction relative to a conveyor belt. One of the soldering irons is conveyed to a working position of the conveyor belt and the other of them is separated from the conveyor belt. While one of the soldering irons solders a circuit board, the other is cleaned. The circuit board has a slit into which a metal plate is inserted and soldered. For the slit, a soldering land constituted of a main-land and a sub-land is provided. The main-land is formed along one of longer sides of the slit. The sub-land is elongated from the main-land along a shorter side of the slit. The soldering land is not formed all around the slit so that the slit is not closed by solder when the circuit board is dip-soldered.
Abstract:
A pin connector system includes a pin portion having a first cross-sectional geometry, wherein the pin portion passes through a pin passage in a first printed circuit board. The pin passage has a second cross-sectional geometry, wherein the combination of the first and second cross-sectional geometries forms a first solder passage for allowing solder to flow through the first printed circuit board.
Abstract:
A method for manufacturing substrate elements includes providing a mother substrate, forming at least one elongated through-hole on the mother substrate such that an entire longitudinal end surface of the first substrate element and a portion of a lateral surface of the second substrate element are exposed, forming an electrode pattern on the inner surface of the at least one elongated through-hole, and cutting the mother substrate along lines extending in the vicinity of the longitudinal ends of the at least one elongated through-hole and in a direction that is substantially perpendicular to the longitudinal axis of the elongated through-hole.
Abstract:
A pair of soldering irons are fixed to a sliding plate at a predetermined interval. The soldering irons are integrally moved so as to reciprocate in a rectangular direction relative to a conveyor belt. One of the soldering irons is conveyed to a working position of the conveyor belt and the other of them is separated from the conveyor belt. While one of the soldering irons solders a circuit board, the other is cleaned. The circuit board has a slit into which a metal plate is inserted and soldered. For the slit, a soldering land constituted of a main-land and a sub-land is provided. The main-land is formed along one of longer sides of the slit. The sub-land is elongated from the main-land along a shorter side of the slit. The soldering land is not formed all around the slit so that the slit is not closed by solder when the circuit board is dip-soldered.
Abstract:
An oscillator includes a multi-layered base. Circuit patterns are formed on a first main surface and the inside of the multi-layered base. Holes through which wiring patterns of the individual layers of the base are connected are formed within the multi-layered base. Electronic components are mounted on the first main surface of the multi-layered base. First and second reverse electrodes, which serve as external terminals to be connected to an external source, are formed on a second main surface of the multi-layered base. The first reverse electrode serves as a ground electrode, and the second reverse electrodes serve as terminal electrodes. The reverse electrodes are electrically connected to the circuit patterns via the holes. The reverse electrodes are located farther inward than the lateral surfaces of the multi-layered base. A shield cover is placed to tightly cover the first main surface of the multi-layered base. It is thus possible to provide a miniaturized, less expensive, and easy-to-mount oscillator module in which unwanted radiation characteristics are improved.