Abstract:
A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell.
Abstract:
A dual gate extremely thin semiconductor-on-insulator transistor with asymmetric gate dielectrics is provided. This structure can improve the sensor detection limit and also relieve the drift effects. Detection is performed at a constant current mode while the species will be detected at a gate electrode with a thin equivalent oxide thickness (EOT) and the gate bias will be applied to the second gate electrode with thicker EOT to maintain current flow through the transistor. As a result, a small change in the charge on the first electrode with the thin EOT will be translated into a larger voltage on the gate electrode with the thick EOT to sustain the current flow through the transistor. This allows a reduction of the sensor dimension and therefore an increase in the array size. The dual gate structure further includes cavities, i.e., microwell arrays, for chemical sensing.
Abstract:
A method may include forming two vertical transport field effect transistors stacked one atop the other and separated by a resistive random access memory structure. The two vertical transport field effect transistors may include a source (104, 112), a channel (106, 110), and a drain, wherein a contact layer (152) of the resistive random access memory strucure functions as the drain of the two vertical transport field effect transistors. Forming the two vertical transport field effect transistors may further include forming a first source (104) and a second source (112). The first source (104) is a bottom source and the second source (112) is a top source. The method may include forming a gate conductor layer (138, 140) surrounding the channel (106, 110). The resistive random access memory structures may include faceted epitaxy (144) defined by pointed tips. The pointed tips of the faceted epitaxy (144) may extend vertically toward each other. The faceted epitaxy (144) may be between the two vertical transport field effect transistors.
Abstract:
Verfahren, das Folgendes umfasst:Erzeugen einer dotierten p-leitenden Gruppe-III/V-Substratschicht (12);Abscheiden einer amorphen hydrierten n+-leitenden Siliciumschicht (72) auf der Substratschicht, undTempern der Substratschicht und der amorphen hydrierten n+-leitenden Siliciumschicht und dadurch Bilden einer Emitterschicht, die in der Substratschicht einen n+leitenden Bereich (74) umfasst, und einer an die Emitterschicht angrenzenden epitaxialen n+-leitenden Schicht (76).
Abstract:
A multi-junction III-V photovoltaic device includes a top cell 10 comprised of at least one III-V compound semiconductor material and a bottom cell 16 in contact with a surface of the top cell. The bottom cell includes a germanium-containing layer 18 in contact with the top cell, an intrinsic hydrogenated silicon-containing layer 20 in contact with a surface of the germanium-containing layer, and a doped hydrogenated silicon-containing layer 22 in contact with a surface of the intrinsic hydrogenated silicon-containing layer. The silicon-containing layers, which may be multilayers and can include one or both of germanium and carbon in different proportions, can be amorphous, nano/micro-crystalline, poly-crystalline or single-crystalline. They provide a back surface field (BSF) structure to the germanium bottom cell to enhance the open circuit voltage of the device. A metallic grid including a plurality of metal fingers 14 and patterned antireflective coatings 12 is located on an upper surface of the top cell 10 and a transparent conductive contact 24 is located on the bottom surface of the bottom cell 16.
Abstract:
Ein Arbeitsspeicher-Netzwerk kann mit mindestens Arbeitsspeicher-Schreibgewichtungen, Arbeitsspeicher-Lesegewichtungen und mindestens einem Lesevektor angelegt werden, wobei die Arbeitsspeicher-Schreibgewichtungen Arbeitsspeicher-Schreiboperationen eines neuronalen Netzwerkes für die Arbeitsspeicher-Matrix parametrisieren, wobei die Arbeitsspeicher-Lesegewichtungen Arbeitsspeicher-Leseoperationen des neuronalen Netzwerkes aus der Arbeitsspeicher-Matrix parametrisieren. Mindestens eine der Schreibgewichtungen, der Lesegewichtungen oder Elemente des mindestens einen Lesevektors kann aktualisiert werden, um eine dünne Besetzung und/oder ein Abtastmuster mit niedriger Abweichung zu erhalten. Das Arbeitsspeicher-Netzwerk kann geschult werden, um eine Aufgabe durchzuführen.
Abstract:
An erasable magnetoresistive random-access memory (MRAM) structure and a method of making the same includes an MRAM cell disposed between bit line and word line circuit elements, and a vertical-cavity surface-emitting laser (VCSEL) element disposed above the MRAM cell. A laser output of the VCSEL is directed toward the MRAM cell.
Abstract:
Übergangs-Feldeffekttransistor (JFET) mit einem Gate-Bereich, der zwei separate Sub-Bereiche, die ein Material mit unterschiedlichen Leitfähigkeitstypen aufweisen, und/oder einen Schottky-Übergang beinhaltet, der einen Gate-Strom im Wesentlichen unterdrückt, wenn der Gate-Übergang in Vorwärtsrichtung vorgespannt ist, ebenso wie Komplementär-Schaltkreise, die derartige JFET-Einheiten umfassen.
Abstract:
Verfahren zum Bilden einer Tandem-Fotovoltaikeinheit, wobei das Verfahren aufweist: Bereitstellen (102) von massivem Germanium oder einer auf einem Siliciumsubstrat gebildeten Germaniumschicht; Nassätzen der Germaniumschicht unter Verwendung eines sauren Ätzmittels, das Phosphorsäure, Wasserstoffperoxid und Ethanol in einem Verhältnis von 1:1:1 enthält; Bilden pyramidenartiger Formen (106; 108) in der Germaniumschicht derart, dass (111)-Kristallflächen (104) freigelegt werden, um eine texturierte Oberfläche zu bilden; Dotieren einer oberen Oberfläche (110) der Germaniumschicht, um einen ersten p-n-Übergang auf oder oberhalb der texturierten Oberfläche zu bilden; Abscheiden einer ersten Halbleiterschicht (112), die der texturierten Oberfläche folgt, auf der oberen Oberfläche, wobei die erste Halbleiterschicht eine GaAs-Schicht oder Legierungen daraus enthält; Dotieren eines Teils der ersten Halbleiterschicht, um einen zweiten p-n-Übergang (132) zu bilden; Abscheiden einer zweiten Halbleiterschicht (116), die dem Profil der texturierten Oberfläche folgt, auf der ersten Halbleiterschicht, wobei die zweite Halbleiterschicht eine GaP-Schicht oder Legierungen daraus enthält; und Dotieren eines Teils der zweiten Halbleiterschicht, um einen dritten p-n-Übergang (134) zu bilden.
Abstract:
A wide band gap semiconductor buffer layer is incorporated between the channel and an insulating support layer. The conduction band offset of the buffer layer with the channel layer is sufficiently large to confine electron carriers within the channel. The buffer layer also reduces the presence of interface traps, which cause degradation of charge carriers in the channel, caused by the presence of the insulating material. The conduction band offset between the channel layer and the wide bandgap material is between 0.05 eV and 0.8 eV. The channel layer can be comprised of InGaAs or InGaSb with varying compositions of indium and gallium. The wide bandgap material can be comprised of InAlAs AlGaAs or InGaP with varying compositions of indium, aluminium or gallium. The wide bandgap material may comprise an embedded silicon delta-doped layer which provides electrons to the channel layer.