Abstract:
A microelectromechanical system (MEMS) and integrated circuit based biosensor (210) capable of sensing or detecting various ionic molecules and macromolecules (DNA, RNA or protein). The MEMS based biosensor (210) may utilize a hybridization and enzyme amplification scheme and an electrochemical detection scheme for sensitivity improvement and system miniaturization. The biosensor or biosensors (210) are incorporated on a single substrate (200). Preferably, the biosensor system comprises at least two electrodes. The electrodes may comprise a working electrode (220), a reference electrode (240), and a counter (auxiliary) electrode (230). The biosensor or biosensors (210) also provide an apparatus and method for confinement of reagent and/or solution in the biosensor or biosensors (210) using surface tension at small scale. The confinement system provides controlled contacts between the reagent(s) and/or solution(s) with the components (i.e., electrodes) of the biosensor or biosensors (210) using controllable surface properties and surface tension forces. The confinement system allows for incorporation of the biosensor or biosensors (210) into a portable or handheld device and is immune to shaking and/or flipping. The invention also provides for a biosensor (210) and/or sensors that are integrated with integrated circuit (IC) technologies. Preferably, the entire sensor system or systems are fabricated on a single IC substrate (200) or chip and no external component and/or instrument is required for a complete detection system or systems. Preferably, the sensor system or systems are fabricated using the IC process on a silicon substrate (200).
Abstract:
A micromachine switch comprises a support member having a predetermined height from the surface of a base, a flexible cantilevered arm projecting from the support member parallel to the surface of the base and facing the gap between two signal lines, a contact electrode provided to the cantilevered arm and facing the gap, a lower electrode provided on the base and facing a part of the cantilevered arm, and an intermediate electrode provided to the cantilevered arm and facing the lower electrode. The micromachine switch operates with a driving voltage lower than that of prior art. The breakdown voltage characteristic of the insulating film is improved.
Abstract:
Described herein is an integrated device (1), having: a first die (2); a second die (6) coupled in a stacked way on the first die (2) along a vertical axis (z); a coupling region (16) arranged between facing surfaces (2a, 6a) of the first die (2) and of the second die (6), which face one another along the vertical axis (z) and lie in a horizontal plane (xy) orthogonal to the vertical axis (z), for mechanical coupling of the first and second dies; electrical-contact elements (17) carried by the facing surfaces (2a, 6a) of the first and second dies, aligned in pairs along the vertical axis (z); and conductive regions (18) arranged between the pairs of electrical-contact elements (17) carried by the facing surfaces (2a, 6a) of the first and second dies, for their electrical coupling. Supporting elements (20) are arranged at the facing surface (2a; 6a) of at least one between the first and second dies and elastically support respective electrical-contact elements.
Abstract:
A MEMS acoustic transducer (20) provided with: a substrate (21) of semiconductor material, having a back surface (21b) and a front surface (21a) opposite with respect to a vertical direction (z); a first cavity (22) formed within the substrate (21), which extends from the back surface (21b) to the front surface (21a); a membrane (23) which is arranged at the upper surface (21a), suspended above the first cavity (22) and anchored along a perimeter thereof to the substrate (21); and a combfingered electrode arrangement (28) including a number of mobile electrodes (29) coupled to the membrane (23) and a number of fixed electrodes (30) coupled to the substrate (21) and facing respective mobile electrodes (29) for forming a sensing capacitor, wherein a deformation of the membrane (23) as a result of incident acoustic pressure waves causes a capacitive variation (ΔC) of the sensing capacitor. In particular, the combfingered electrode arrangement lies vertically with respect to the membrane (23) and extends parallel thereto.
Abstract:
A method for producing a silicon based MEMS pressure sensor includes forming a cavity in a first (100) surface of a silicon wafer with first and second parallel (100) surfaces wherein the angle between the walls of the first cavity and the first (100) surface where they intersect the first (100) surface are greater than 90 degrees and the remaining material between the bottom of the cavity and the second parallel (100) surface comprises a flexible diaphragm. The method also includes forming a backing wafer, having a through hole, and bonding the silicon wafer to the backing wafer such that the hole in the backing wafer matches up with the cavity in the second side of the (100) silicon wafer. A dielectric layer is formed on the second side of the (100) silicon wafer and a sensing element is formed on the dielectric layer to detect pressure induced deflection of the silicon diaphragm.
Abstract:
A method of forming microneedles where through a series of coating and etching processes microneedles are formed from a surface as an array. The microneedles have a bevelled end and bore which are formed as part of the process with no need to use a post manufacturing process to finish the microneedle.
Abstract:
Systems and methods that protect CMOS layers from exposure to a release chemical are provided. The release chemical is utilized to release a micro-electromechanical (MEMS) device integrated with the CMOS wafer. Sidewalls of passivation openings created in a complementary metal-oxide-semiconductor (CMOS) wafer expose a dielectric layer of the CMOS wafer that can be damaged on contact with the release chemical. In one aspect, to protect the CMOS wafer and prevent exposure of the dielectric layer, the sidewalls of the passivation openings can be covered with a metal barrier layer that is resistant to the release chemical. Additionally or optionally, an insulating barrier layer can be deposited on the surface of the CMOS wafer to protect a passivation layer from exposure to the release chemical.
Abstract:
L'invention concerne un micro-réflectron pour spectromètre de masse à temps de vol comprenant un substrat (3100, 5400), et, intégrés au volume du substrat, des moyens (5400) d'application d'un gradient de potentiel dans un volume adapté à constituer une zone de vol des ions (3300 ), caractérisé en ce que lesdits moyens d'application comprennent au moins deux électrodes de polarisation et une paroi en au moins un matériau résistif adaptée à être polarisée entre ces électrodes en sorte de générer un gradient continu de potentiel en assurant elle-même la fonction de réflectron, cette zone de vol, ces électrodes et cette paroi étant obtenues par la technologie des systèmes micro-électromécaniques (MEMS) et ce micro-réflectron ayant une épaisseur inférieure à 5 millimètres tandis que ses autres dimension sont inférieures à 10 fois cette épaisseur.
Abstract:
A method for protecting a material of a microstructure comprising said material and a noble metal layer (8) against undesired galvanic etching during manufacture comprises forming on the structure a sacrificial metal layer (12) having a lower redox potential than said material, the sacrificial metal layer (12) being electrically connected to said noble metal layer (8).
Abstract:
The present invention relates to a method for the production of very small trenches in semiconductor devices. The formation of these small trenches is based on chemically changing the properties of a first dielectric layer locally, such that the side walls of a patterned hole in said first dielectric layer are converted locally and become etchable by a first etching substance. Subsequently a second dielectric material is deposited in the patterned structure and the damaged part of the first dielectric material is removed such that small trenches are obtained. The small trenches obtained by chemically changing the properties of a dielectric layer can be used as test vehicle to study barrier deposition, copper plating and seedlayer deposition within very small trenches (order 10-30 nm).