Abstract:
The present invention provides an electronic assembly 400 and a method for its manufacture 800, 900, 1000 1200, 1400, 1500, 1600, 1700. The assembly 400 uses no solder. Components 406, or component packages 402, 802, 804, 806 with I/O leads 412 are placed 800 onto a planar substrate 808. The assembly is encapsulated 900 with electrically insulating material 908 with vias 420, 1002 formed or drilled 1000 through the substrate 808 to the components' leads 412. Then the assembly is plated 1200 and the encapsulation and drilling process 1500 repeated to build up desired layers 422, 1502, 1702. Assemblies may be mated 1800. Within the mated assemblies, items may be inserted including pins 2202a, 2202b, and 2202c, mezzanine interconnection devices 2204, heat spreaders 2402, and combination heat spreaders and heat sinks 2602. Edge card connectors 2802 may be attached to the mated assemblies.
Abstract:
On the board provided with a conductive layer (5), a pad (16) is formed to fix a conductive connecting pin (100) on a package board (310). The conduction connecting pin (100) serves as electrical connection to a motherboard. The pad (16) is coated with an organic-resin insulating layer (15) having an opening section (18) from which the pad (16) is partially exposed. The conductive connecting pin (100) is fixed to the pad exposed from the opening section using a conductive adhesive (17), preventing the conductive connecting pin (100) from separating off the board at the time of mounting.
Abstract:
A technique for use in manufacturing electronic assemblies involves forming a hole (170) in one side (128) of a circuit board (130) and only partially through the board. A pin (164, 166), such as an electrically conductive lead, is then inserted into the hole, and an adhesive material (176, 178) is used to bond the pin to the circuit board.
Abstract:
Products and assemblies are provided for socketably receiving elongate interconnection elements, such as spring contact elements, extending from electronic components, such as semiconductor devices. Socket substrates are provided with capture pads for receiving ends of elongate interconnection elements extending from electronic components. Various capture pad configurations are disclosed. A securing device such as a housing positions the electronic component securely to the socket substrate. Connections to external devices are provided via conductive traces adjacent the surface of the socket substrate. The socket substrate may be supported by a support substrate. In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.
Abstract:
Contact structures exhibiting resilience or compliance for a variety of electronic components are formed by bonding a free end of a wire (502) to a substrate (508), configuring the wire (530) into a wire stem (530) having a springable shape, severing the wire stem (530), and overcoating the wire stem (530) with at least one layer of a material (522). In an exemplary embodiment, a free end of a wire stem (530) is bonded to a contact area on a substrate (508), the wire stem (530) is configured to have a springable shape, the wire stem (530) is severed to be free-standing by an electrical discharge, and the free-standing wire stem is overcoated by plating. A variety of materials for the wire stem (530) (which serves as a falsework) and for the overcoat (540) (which serves as a superstructure over the falsework) are disclosed. The resilient contact structures described herein are ideal for making a "temporary" (probe) connections to an electronic component such as a semiconductor die, for burn-in and functional testing.
Abstract:
Resilient contact structures extend from a top surface of a support substrate and solder-ball (or other suitable) contact structures are disposed on a bottom surface of the support substrate. Interconnection elements (110) are used as the resilient contact structures and are disposed atop the support substrate. Selected ones of the resilient contact structures atop the support substrate are connected, via the support substrate, to corresponding ones of the contact structures on the bottom surface of the support substrate. In an embodiment intended to receive an LGA-type semiconductor package (304), pressure contact is made between the resilient contact structures and external connection points of the semiconductor package with a contact force which is generally normal to the top surface of the support substrate (302). In an embodiment intended to receive a BGA-type semiconductor package (404), pressure contact is made between the resilient contact structures and external connection points of the semiconductor package with a contact force which is generally parallel to the top surface of the support substrate (402).
Abstract:
A fingerprint module includes a cover plate, a fingerprint chip, an intermediate board, and a circuit board. An assembling region is disposed on the cover plate. The fingerprint chip is fixed in the assembling region. The intermediate board is bonded to one surface of the fingerprint chip opposite to the cover plate to press the fingerprint chip. The circuit board is electrically connected to the fingerprint chip via the intermediate board.
Abstract:
A video camera head is comprised of at least two rigid printed circuit boards (PCBS) arranged in parallel planes. The at least two PCBs are mechanically supported one above the other by pins made of an electricity conducting material that conduct electrical power from the bottom PCB to electronic components or illumination means mounted on the other PCBs and signals from a solid state sensor chip mounted on one of the other PCBs of the at least two PCBs to the bottom PCB. Several embodiments of the video camera head are described.