METHOD FOR CONTROLLED SPALLING
    11.
    发明专利

    公开(公告)号:GB2493244A

    公开(公告)日:2013-01-30

    申请号:GB201210426

    申请日:2012-06-13

    Applicant: IBM

    Abstract: A method of controlled layer transfer is provided. The method includes providing a stressor layer 16 to a base substrate. The stressor layer has a stressor layer portion 16A located atop an upper surface (12, fig. 1) of the base substrate 10 and a self-pinning stressor layer portion 16B located adjacent each sidewall edge of the base substrate. A spalling inhibitor (20) is then applied atop the stressor layer portion of the base substrate, and thereafter the self-pinning stressor layer portion of the stressor layer is decoupled from the stressor layer portion by applying a laser or chemical etch to the self-pinning stressor layer portion. A portion of the base substrate that is located beneath the stressor layer portion is then spalled from the original base substrate. The spalling includes displacing the spalling inhibitor from atop the stressor layer portion to control the spalling.

    Edge-exclusion spalling method for removing substrate material

    公开(公告)号:GB2492444A

    公开(公告)日:2013-01-02

    申请号:GB201208147

    申请日:2012-05-10

    Applicant: IBM

    Abstract: A method to minimize edge-related substrate breakage during spalling using an edge-exclusion region (14) where the stressor layer (16) is either non-present (excluded either during deposition or removed afterwards) or present but significantly non-adhered to the substrate surface in the exclusion region is provided. In a preferred embodiment of the present invention, the method includes forming an edge exclusion material (14) on an upper surface and near an edge of a base substrate (10â â ). A stressor layer (16) is then formed on exposed portions of the upper surface of the base substrate (10â â ) and atop the edge exclusion material (14). A portion (10â ) of the base substrate that is located beneath the stressor layer and which is not covered by the edge exclusion material is then spalled and separated from the bulk of the substrate. The material is removed from the substrate by stresses caused by the stressor layer. An adhesive layer (15) can be formed between the substrate and stressor layer. This method improves the reusability of the substrate.

    Method for controlled removal of a semiconductor device layer from a base substrate

    公开(公告)号:GB2491930A

    公开(公告)日:2012-12-19

    申请号:GB201206430

    申请日:2012-04-12

    Applicant: IBM

    Abstract: A method of removing a semiconductor device layer from a base substrate comprising providing a crack propagation layer 12 on an upper surface of a base substrate 10; a semiconductor device layer 14 including at least one semiconductor device is formed on the crack propagation layer 12; etching the end portions of the crack propagation layer 12 to initiate a crack in the crack propagation layer 12; the etched crack propagation layer 15 is then cleaved to provide a cleaved crack propagation layer portion to a surface of the semiconductor device layer 14 and another cleaved crack propagation layer portion to the upper surface of the base substrate 10; the cleaved crack propagation layer portion is removed from the surface of the semiconductor device layer 14 and the another cleaved crack propagation layer portion is removed from the upper surface of the base substrate 10. Prior to etching the crack propagation layer 12, a stressor 16 may be applied to the device layer; the stressor 16 may further be bonded to a polymer support 18. The present method allows for cleaving of a semiconductor device layer 14 from a substrate 10 at a controlled location.

    Spalling for a semiconductor substrate

    公开(公告)号:GB2490606A

    公开(公告)日:2012-11-07

    申请号:GB201208994

    申请日:2011-02-16

    Applicant: IBM

    Abstract: A method for spalling a layer from an ingot of a semiconductor substrate includes forming a metal layer on the ingot of the semiconductor substrate, wherein a tensile stress in the metal layer is configured to cause a fracture in the ingot; and removing the layer from the ingot at the fracture. A system for spalling a layer from an ingot of a semiconductor substrate includes a metal layer formed on the ingot of the semiconductor substrate, wherein a tensile stress in the metal layer is configured to cause a fracture in the ingot, and wherein the layer is configured to be removed from the ingot at the fracture.

    LAYER TRANSFER USING BORON-DOPED SIGE LAYER

    公开(公告)号:GB2489830A

    公开(公告)日:2012-10-10

    申请号:GB201206801

    申请日:2011-02-01

    Applicant: IBM

    Abstract: A method for layer transfer using a boron-doped silicon germanium (SiGe) layer includes forming a boron-doped SiGe layer on a bulk silicon substrate; forming an upper silicon (Si) layer over the boron-doped SiGe layer; hydrogenating the boron-doped SiGe layer; bonding the upper Si layer to an alternate substrate; and propagating a fracture at an interface between the boron-doped SiGe layer and the bulk silicon substrate. A system for layer transfer using a boron-doped silicon germanium (SiGe) layer includes a bulk silicon substrate; a boron-doped Si Ge layer formed on the bulk silicon substrate, such that the boron-doped SiGe layer is located underneath an upper silicon (Si) layer, wherein the boron- doped SiGe layer is configured to propagate a fracture at an interface between the boron- doped SiGe layer and the bulk silicon substrate after hydrogenation of the boron-doped SiGe layer; and an alternate substrate bonded to the upper Si layer.

    Silicon-based Josephson junction for qubit devices

    公开(公告)号:AU2021211858A1

    公开(公告)日:2022-06-09

    申请号:AU2021211858

    申请日:2021-01-15

    Applicant: IBM

    Abstract: Techniques regarding qubit devices comprising silicon-based Josephson junctions and/or the manufacturing of qubit devices comprising silicon-based Josephson junctions are provided. For example, one or more embodiments described herein can comprise an apparatus that can include a Josephson junction comprising a tunnel barrier positioned between two vertically stacked superconducting silicon electrodes.

    Two-sided Majorana fermion quantum computing devices fabricated with ion implant methods

    公开(公告)号:AU2020384653A1

    公开(公告)日:2022-04-21

    申请号:AU2020384653

    申请日:2020-11-10

    Applicant: IBM

    Abstract: A quantum computing device is fabricated by forming, on a superconductor layer (410), a first resist pattern defining a device region and a sensing region within the device region. The superconductor layer within the sensing region is removed, exposing a region of a first surface of an underlying semiconductor layer (340) outside the device region. The exposed region of the semiconductor layer is implanted, forming an isolation region surrounding the device region. The sensing region and a portion of the device of the superconductor layer are exposed. A sensing region contact (202) is formed by coupling the first surface of the semiconductor layer with a first metal layer. A nanorod contact (206, 212) using the first metal within the portion of the device region outside the sensing region is formed. By depositing a second metal layer on a second surface of the semiconductor layer within the sensing region, a tunnel junction gate (204) is formed.

    AUF IONENEINFANG BASIERENDE EINHEIT MIT MEHREREN ZUSTÄNDEN UND HERSTELLUNGSVERFAHREN

    公开(公告)号:DE112018005625B4

    公开(公告)日:2021-02-11

    申请号:DE112018005625

    申请日:2018-11-16

    Applicant: IBM

    Abstract: Halbleiterstruktur, aufweisend:ein Halbleitersubstrat (10), welches mindestens eine Kanalzone (11) umfasst, die zwischen Source/Drain-Zonen (12L, 12R) positioniert ist;ein Gate-Dielektrikumsmaterial (14), welches auf der Kanalzone des Halbleitersubstrats angeordnet ist; undeinen Batteriestapel (16), welcher auf dem Gate-Dielektrikumsmaterial angeordnet ist, wobei der Batteriestapel einen Kathodenstromkollektor (18), der auf dem Gate-Dielektrikumsmaterial angeordnet ist, ein Kathodenmaterial (20), das auf dem Kathodenstromkollektor angeordnet ist, ein erstes lonendiffusionsbarrieren-Material (22), das auf dem Kathodenmaterial angeordnet ist, einen Elektrolyten (24), der auf dem ersten lonendiffusionsbarrieren-Material angeordnet ist, ein zweites lonendiffusionsbarrieren-Material (26), das auf dem Elektrolyten angeordnet ist, eine Anodenzone (28), die auf dem zweiten lonendiffusionsbarrieren-Material angeordnet ist, und einen Anodenstromkollektor (30) aufweist, der auf der Anodenzone angeordnet ist,wobei die Anodenzone (28) eine Anhäufungszone ist, die sich während eines Lade /Wiederaufladeverfahrens bildet.

Patent Agency Ranking