Abstract:
This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
Abstract:
Labeled reactant compositions, and particularly labeled nucleic acid reaction compositions, that include structural components that maintain potentially damaging labeling components sufficiently distal from the reactant portion of the molecule such that damaging effects of the label group on other reaction components, such as enzymes, are reduced, minimized and/or eliminated.
Abstract:
Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
Composition, systems, apparatus and methods of enhancing fluorescent signals in biochemical are described. Metal particle proximity to enzymes that produce fluorescent products provide enhanced fluorescence of the product and plasmon resonance of the metal particle. Multi-labeled nucleotides enhance signal production. Reflectance of illumination light and emitted fluorescence increase signal strength for a given illumination light.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
Active surface coupled polymerases, surfaces that include such polymerases, and methods of making and using surface-attached polymerases are provided.
Abstract:
This specification provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.