Abstract:
PROBLEM TO BE SOLVED: To provide a transfer substrate for forming metal wiring on a transferred object by transfer method in which the heating temperature can be lowered on the transferred object side, and to provide a method of forming metal wiring.SOLUTION: The transfer substrate comprises: a substrate; at least one metal wiring material formed on the substrate; and an underlying metal film formed between the substrate and the metal wiring material, and transfers the metal wiring material to a transferred object. The metal wiring material is a molding produced by sintering gold powder, or the like, having a purity of 99.9 wt% or higher, and an average particle diameter of 0.01-1.0 μm, and the underlying metal film is composed of a metal such as gold or an alloy. The transfer substrate can transfer the metal wiring material to the transferred object even if the heating temperature of the transferred object is 80-300°C.
Abstract:
The present invention provides a transfer substrate for transferring a metal wiring material to a transfer-receiving object, the transfer substrate comprising a substrate, at least one metal wiring material formed on the substrate and an underlying metal film formed between the substrate and the metal wiring material, wherein the metal wiring material is a molded article prepared by sintering, e.g., gold powder having a purity of 99.9% by weight or more and an average particle size of 0.01 µm to 1.0 µm and the underlying metal film is composed of a metal such as gold or an alloy. The transfer substrate is capable of transferring a metal wiring material to the transfer-receiving object even at a temperature for heating the transfer-receiving object of 80 to 300°C.
Abstract:
Plasma micro nozzle adapters having various configurations and operating principles are disclosed. The plasma micro nozzle adapter is employed with a commercial plasma jet printer to produce smaller printed features than those possible with the original plasma jet printer. In a first class of embodiments, the plasma micro nozzle adapter narrows a plasma jet using electrostatic or magnetostatic lensing, permitting the printing of ceramic, metallic, dielectric, or plastic features with line widths of 10 μm or less. In a second class of embodiments, the plasma micro nozzle adapter narrows the plasma jet using a gas sheath. By adjusting the flow rate or pressure of the gas used to form the gas sheath, the cross-sectional shape of the plasma jet may form, for example, an ellipse, thereby controlling the width of the printed feature. A third class of embodiments employs both electrostatic (or magnetostatic) lensing along with the gas sheath.
Abstract:
A MEMS temperature sensor including a clamped-clamped microbeam having a drive electrode on one side configured for applying an AC current, and a sense electrode diagonally situated on the other side, a first anchor at one end and a second anchor at the other end of the microbeam. The first anchor receive a DC bias currents, which heats the microbeam to an operating temperature. The sense electrode is configured to capacitively sense oscillations in the microbeam due to an applied AC current. The MEMS temperature sensor has a three wafer construction in which the components are formed. The device is encapsulated by aluminum, and metal wires connect the first and second anchor, the drive electrode and the sense electrode to side electrode pads outside of the encapsulation. The MEMS temperature sensor has a linear operating region of 30-60 degrees Celsius.
Abstract:
In described examples, a hermetic package of a microelectromechanical system (MEMS) structure includes a substrate having a surface with a MEMS structure of a first height. The substrate is hermetically sealed to a cap forming a cavity over the MEMS structure. The cap is attached to the substrate surface by a vertical stack of metal layers adhering to the substrate surface and to the cap. The stack has a continuous outline surrounding the MEMS structure while spaced from the MEMS structure by a distance. The stack has: a first bottom metal seed film adhering to the substrate and a second bottom metal seed film adhering to the first bottom metal seed film; and a first top metal seed film adhering to the cap and a second top metal seed film adhering to the first top metal seed film.
Abstract:
Methods, devices and systems for targeted, maskless modification of material on or in a substrate using charged particle beams. Electrostatically-deflected charged particle beam columns can be targeted in direct dependence on the design layout database to perform direct and knock-on ion implantation, producing patterned material modifications with selected chemical and 3D-structural profiles. The number of required process steps is reduced, reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Local gas and photon injectors and detectors are local to corresponding individual columns, and support superior, highly-configurable process execution and control. Targeted implantation can be used to prepare the substrate for patterned blanket etch; patterned ALD can be used to prepare the substrate for patterned blanket deposition; neither process requiring photomasks or resist. Arrays of highly configurable beam columns can also be used to perform both positive and negative tone lithography in a single pass.
Abstract:
The invention relates to a silicon-based component with at least one reduced contact surface which, formed from a method combining at least one oblique side wall etching step with a “Bosch” etch of vertical side walls, improves, in particular, the tribology of components formed by micromachining a silicon-based wafer.
Abstract:
Systems and methods for a MEMS device, in particular, a MEMS switch, and the manufacture thereof are provided. In one example, said MEMS device comprises posts and a conduction (transmission) line formed over a substrate and a membrane over the posts and the conduction line. The membrane comprises a first membrane layer and a second membrane layer formed over the first membrane layer in a region over one of the posts and/or a region over the conduction line such that the first membrane layer has a region where the second membrane layer is not formed adjacent to the region where the second membrane layer is formed.
Abstract:
A micro-electromechanical device and method of manufacture are disclosed. A sacrificial layer is formed on a silicon substrate. A metal layer is formed on a top surface of the sacrificial layer. Soft magnetic material is electrolessly deposited on the metal layer to manufacture the micro-electromechanical device. The sacrificial layer is removed to produce a metal beam separated from the silicon substrate by a space.