Abstract:
A method of forming a patterned chemical epitaxy template, for orientation of a self-assemblable block copolymer comprising first and second polymer blocks, on a surface of a substrate, the method including applying a primer layer of a primer composition to the surface, the primer composition comprising a first polymer moiety having a chemical affinity with the first polymer blocks and a second polymer moiety having a chemical affinity with the second polymer blocks, selectively exposing the surface, the primer layer and any overlying layer to actinic radiation to provide exposed and unexposed regions, to render labile the first polymer moiety in the exposed region, and removing the labile first polymer moiety from the exposed region to deplete the primer layer surface in the exposed region of first polymer moiety to form the patterned chemical epitaxy template.
Abstract:
A BCP having first block of first monomer and second block of second monomer, adapted to undergo a transition from disordered state to ordered state at a temperature less than T0D, further including a bridging moiety having a functional group to provide hydrogen bonding between bridging moieties of adjacent first and second BCP molecules when in the ordered state and at a temperature in excess of a glass transition temperature Tg for the BCP. Composition including BCP comprising first block of first monomer and second block of second monomer, and a crosslinking compound having first and second terminal groups joined by a central moiety and arranged to crosslink second blocks of adjacent first and second BCP molecules by providing non-covalent bonding between the terminal groups and a functional group of the second monomer of the second blocks when the BCP is in the ordered state.
Abstract:
A method of forming at least one lithography feature, the method comprising: providing at least one lithography recess on a substrate, the or each lithography recess comprising side-walls and a base, with the side-walls having a width therebetween; providing a self-assemblable block copolymer having first and second blocks in the or each lithography recess; causing the self-assemblable block copolymer to self-assemble into an ordered layer within the or each lithography recess, the ordered layer comprising at least a first domain of first blocks and a second domain of second blocks; causing the self-assemblable block copolymer to cross-link in a directional manner; and selectively removing the first domain to form lithography features comprised of the second domain within the or each lithography recess.
Abstract:
A method of lithography on a substrate uses a self-assembled polymer (SAP) layer deposited on the substrate, with first and second domains arranged in a pattern across the layer. A planarization layer is formed over the SAP and a development etch applied to substantially remove a portion of the planarization layer over the second domain leaving a cap of the planarization layer substantially covering the first domain. The uncapped second domain is then removed from the surface by a breakthrough etch leaving the capped first domain as a pattern feature on the surface. A transfer etch may then be used to transfer the pattern feature to the substrate using the capped first domain. The capping allows the second domain to be removed, e.g., without excessive loss of lateral feature width for the remaining first domain, even when the difference in etch resistance between the first and second domains is small.
Abstract:
A method of forming a self-assembled block polymer layer, oriented to form an ordered array of alternating domains, is disclosed. The method involves providing a layer of the self-assemblable block copolymer on the substrate and depositing a first surfactant onto the external surface of the layer prior to inducing self-assembly of the layer to form the ordered array of domains. The first surfactant has a hydrophobic tail and a hydrophilic head group and acts to reduce the interfacial energy at the external surface of the block copolymer layer in order to promote formation of assembly of the block copolymer polymer into an ordered array having the alternating domains.