Abstract:
A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region (103) in a semiconductor substrate (102) for accommodation of a first type semiconductor device (130); forming a second well region (104) in the semiconductor substrate (102) for accommodation of a second type semiconductor device (140); shielding the first type semiconductor device (130) with a mask (114); depositing a first metal layer (118) over the second type semiconductor device (140); performing a first salicide formation on the second type semiconductor device (140); removing the mask (114); depositing a second metal layer (123) over the first and second type semiconductor devices (130,140); and performing a second salicide formation on the first type semiconductor device (130). The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different suicide material over different devices.
Abstract:
A method of forming a dual self-aligned fully silicided gate in a CMOS device requiring only one lithography level, wherein the method comprises forming a first type semiconductor device (270) having a first well region (253) in a semiconductor substrate (252), first source/drain silicide areas (266) in the first well region (253), and a first type gate (263) isolated from the first source/drain silicide areas (266); forming a second type semiconductor device (280) having a second well region (254) in the semiconductor substrate (252), second source/drain silicide areas (256) in the second well region (254), and a second type gate (258) isolated from the second source/drain silicide areas (256); selectively forming a first metal layer (218) over the second type semiconductor device (280); performing a first fully silicided (FUSI) gate formation on only the second type gate (258); depositing a second metal layer (275) over the first and second type semiconductor devices (270,280); and performing a second FUSI gate formation on only the first type gate (263).
Abstract:
PROBLEM TO BE SOLVED: To minimize the associated complexity and cost in fabricating a CMOS structure containing silicide contacts and metal silicide gates. SOLUTION: The method of integrating the silicide metal of a CMOS allows incorporation of silicide contacts (S/D and gates) and metal silicide gates using a self-alignment process (salicide) and at least one lithography process. The integration method allows at least two different thicknesses of metals deposited on a semiconductor substrate such that on some of the CMOS transistors thinner silicide metals are formed and used in the formation of gate contacts, whereas on the other CMOS transistors thicker silicide metals are formed and used in the formation of metal silicide gates. The integration method of the present invention can also be used to form multiple phases of metal silicide gates by varying the metal deposition thickness thus having differing amounts of metal present during metal gate formation. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method and structure of reducing the contact resistance between a silicide contact and metallization on it. SOLUTION: A structure is provided with: a semiconductor substrate 12 including at least one field effect transistor arranged on the top and including silicide contact regions 16A, 16B, and 16C arranged adjacent to at least one field effect transistor; an insulating intermediate layer 18 that is arranged on the semiconductor substrate, extended onto at least one field effect transistor, and having contact opening parts 20 exposing the silicide contact regions; and a contact material 24 containing metal germanide in the contact opening parts. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a self-aligned silicide process applicable to contacting silicon, sidewall, source, and drain. SOLUTION: A method (and a structure formed by using this method) to form a metal silicide contact on a non-planar silicon-containing area which limits the silicon consumption at a silicon-containing area includes: forming a blanket metal layer over the silicon-containing area, forming a silicon layer over the metal layer, performing an selective and anisotropical etching of the silicon layer against the metal, forming a metal silicon alloy by reacting the metal and silicon at a first temperature, etching away any unreacted metal layer, forming a metal-Si2 alloy by annealing at a second temperature, and selectively etching away any unreacted silicon layer.
Abstract:
A method of forming a dual self-aligned fully silicided gate in a CMOS device requiring only one lithography level, wherein the method comprises forming a first type semiconductor device (270) having a first well region (253) in a semiconductor substrate (252), first source/drain silicide areas (266) in the first well region (253), and a first type gate (263) isolated from the first source/drain silicide areas (266); forming a second type semiconductor device (280) having a second well region (254) in the semiconductor substrate (252), second source/drain silicide areas (256) in the second well region (254), and a second type gate (258) isolated from the second source/drain silicide areas (256); selectively forming a first metal layer (218) over the second type semiconductor device (280); performing a first fully silicided (FUSI) gate formation on only the second type gate (258); depositing a second metal layer (275) over the first and second type semiconductor devices (270,280); and performing a second FUSI gate formation on only the first type gate (263).
Abstract:
An interconnect structure which includes a plating seed layer that has enhanced conductive material, preferably, Cu, diffusion properties is provided that eliminates the need for utilizing separate diffusion and seed layers. Specifically, the present invention provides an oxygen/nitrogen transition region within a plating seed layer for interconnect metal diffusion enhancement. The plating seed layer may include Ru, Ir or alloys thereof, and the interconnect conductive material may include Cu, Al, AlCu, W, Ag, Au and the like. Preferably, the interconnect conductive material is Cu or AlCu. In more specific terms, the present invention provides a single seeding layer which includes an oxygen/nitrogen transition region sandwiched between top and bottom seed regions. The presence of the oxygen/nitrogen transition region within the plating seed layer dramatically enhances the diffusion barrier resistance of the plating seed.
Abstract:
An integrated circuit is provided including a narrow gate stack having a width less than or equal to 65 nm, including a suicide region comprising Pt segregated in a region of the suicide away from the top surface of the suicide and towards an lower portion defined by a pulldown height of spacers on the sidewalls of the gate conductor. In a preferred embodiment, the spacers are pulled down prior to formation of the suicide. The suicide is first formed by a formation anneal, at a temperature in the range 250°C to 450°C. Subsequently, a segregation anneal at a temperature in the range 450°C to 550°C. The distribution of the Pt along the vertical length of the suicide layer has a peak Pt concentration within the segregated region, and the segregated Pt region has a width at half the peak Pt concentration that is less than 50% of the distance between the top surface of the suicide layer and the pulldown spacer height.