Abstract:
This composite charged particle beam device comprises a first charged particle beam column (6), a second charged particle beam column (1) which is equipped with a deceleration system, and is equipped with a detector (3) inside the column, a test piece stage (10) on which a test piece (9) is placed, and an electric field correction electrode (13) which is provided around the tip of the first charged particle beam column, wherein the electric field correction electrode is an electrode that corrects the electric field distribution formed in the vicinity of the test piece, and the electric field correction electrode is positioned between the test piece and the first charged particle beam column, and on the opposite side from the second charged particle beam column with respect to the optical axis of the first charged particle beam column.
Abstract:
A system that generates short charged particle packets or pulses (e.g., electron packets) without requiring a fast-switching-laser source is described. This system may include a charged particle source that produces a stream of continuous charged particles to propagate along a charged particle path. The system also includes a charged particle deflector positioned in the charged particle path to deflect the stream of continuous charged particles to a set of directions different from the charged particle path. The system additionally includes a series of beam blockers located downstream from the charged particle deflector and spaced from one another in a linear configuration as a beam-blocker grating. This beam-blocker grating can interact with the deflected stream of charged particles and divide the stream of the charged particles into a set of short particle packets. In one embodiment, the charged particles are electrons. The beam blockers can be conductors.
Abstract:
Hybrid inspectors are provided. One system includes computer subsystems) configured for receiving optical based output and electron beam based output generated for a specimen. The computer subsystem(s) include one or more virtual systems configured for performing one or more functions using at least some of the optical based output and the electron beam based output generated for the specimen. The system also includes one or more components executed by the computer subsystem(s), which include one or more models configured for performing one or more simulations for the specimen. The computer subsystem(s) are configured for detecting defects on the specimen based on at least two of the optical based output, the electron beam based output, results of the one or more functions, and results of the one or more simulations.
Abstract:
Intensity of near-ultraviolet light or visible light of 180 to 700 nm emitted from a solid sample, such as an organic semiconductor, irradiated with an electron beam is measured, while kinetic energy (accelerating energy) of the electron beam is changed in a range of 0 to 5 eV so as to obtain a spectrum. Peaks are detected from the spectrum, and the energy thereof is defined as unoccupied-states energy of the sample. The onset energy of the first peak represents electronic affinity energy (electron affinity) of the sample. Since the energy of the electron beam irradiated onto the sample is 5 eV or less, almost no damage is exerted on the sample even when the sample is an organic semiconductor.
Abstract:
A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
Abstract:
An apparatus includes at least one electron beam generator for generating accelerated electrons with which bulk material particles are impingeable during free fall. The electron beam generator has an annular design in which the electrons are emitted and accelerated by an annular cathode. The electrons exit from an electron outlet window in the direction of the ring axis. The annular electron beam generator is arranged in such a way that the ring axis of the electron beam generator is oriented perpendicular to, or at an angle of up to 45° from the horizontal. The apparatus may further include a device for separating bulk material particles arranged above the annular electron beam generator, the bottom wall of said device having at least one opening out of which the bulk material particles fall and, from there, fall through the ring which is formed by the electron beam generator.
Abstract:
A charged particle beam focusing apparatus includes a charged particle beam generator configured to project simultaneously at least one non-astigmatic charged particle beam and at least one astigmatic charged particle beam onto locations on a surface of a specimen, thereby causing released electrons to be emitted from the locations. The apparatus also includes an imaging detector configured to receive the released electrons from the locations and to form images of the locations from the released electrons. A processor analyzes the image produced by the at least one astigmatic charged particle beam and in response thereto adjusts a focus of the at least one non-astigmatic charged particle beam.
Abstract:
An ElectroMagnetic-Mechanical Pulser can generate electron pulses at rates up to 50 GHz, energies up to 1 MeV, duty cycles up to 10%, and pulse widths between 100 fs and 10 ps. A modulating Transverse Deflecting Cavity (“TDC”) imposes a transverse modulation on a continuous electron beam, which is then chopped into pulses by an adjustable Chopping Collimating Aperture. Pulse dispersion due to the modulating TDC is minimized by a suppressing section comprising a plurality of additional TDC's and/or magnetic quadrupoles. In embodiments the suppression section includes a magnetic quadrupole and a TDC followed by four additional magnetic quadrupoles. The TDC's can be single-cell or triple-cell. A fundamental frequency of at least one TDC can be tuned by literally or virtually adjusting its volume. TDC's can be filled with vacuum, air, or a dielectric or ferroelectric material. Embodiments are easily switchable between passive, continuous mode and active pulsed mode.
Abstract:
A current regulation method of multiple beams includes acquiring a current density distribution; selecting at least one beam whose current density is equal to or more than a threshold; measuring a current value of the at least one beam respectively by varying a voltage applied to the Wehnelt electrode and acquiring a correlation between the voltage and the current value; moving a stage to a position where the at least one beam is allowed to enter a current detector each time writing of a stripe region is completed; measuring, after moving the stage, a current value of the at least one beam while beams of the multiple beams whose current density is less than the threshold are blocked; operating a target voltage value applied to the Wehnelt electrode to cause the current value measured to be a target current value; and applying the target voltage value to the Wehnelt electrode.
Abstract:
The invention provides a charged particle beam system wherein the middle section of the focused ion beam column is biased to a high negative voltage allowing the beam to move at higher potential than the final beam energy inside that section of the column. At low kV potential, the aberrations and coulomb interactions are reduced, which results in significant improvements in spot size.