Abstract:
A socket for an integrated circuit which is used for attaching the integrated circuit to a socket mounted on a primary wiring board with an intermediate wiring board interposed therebetween, an adapter for an integrated circuit utilizing the integrated circuit socket, and an integrated circuit assembly utilizing the integrated circuit adapter. The integrated circuit socket includes: a housing to be directly fitted with the integrated circuit; a long insertion pin which is to be inserted through the intermediate wiring board and to be fitted in the socket of the primary wiring board; a short insertion pin which is to be inserted through the intermediate wiring board but not to reach the socket of the primary wiring board; and a surface-mount pin which is to be connected to a surface of the intermediate wiring board opposed to the housing; the long insertion pin, the short insertion pin and the surface-mount pin being implanted in the housing.
Abstract:
A low profile multi-IC chip package for high speed application comprises a connector for electrically connecting the equivalent outer leads of a set of stacked primary semiconductor packages. In one embodiment, the connector comprises a two-part sheet of flexible insulative polymer with buses formed on one side. In another embodiment, the connector comprises multiple buses formed from conductive polymer. In further embodiments, the primary packages are stacked within a cage and have their outer leads in unattached contact with buses within the cage, or, alternatively, are directly fixed to leads or pads on the host circuit board.
Abstract:
An electronic assembly which includes a semiconductor chip package having an array of package terminals and a translator. The translator has a first array of terminals exposed on a first surface of the translator and a second array of terminals exposed on a second surface of the translator. The pitch of the first array matches the pitch of the semiconductor package. The pitch of the second array matches the pitch of the printed circuit board to which the electronic assembly is to be mounted. The array of package terminals on the semiconductor chip package is aligned with and bonded to the first array of terminals on the translator to form the electronic assembly. The electronic assembly can then be mounted on a board by aligning and bonding the second array of terminals on the translator with the connection pads on the printed circuit board.
Abstract:
A connector for microelectronic elements includes a sheetlike body having a plurality of active contacts arranged in a regular grid pattern. The active contacts may include several sheetlike metallic projections extending inwardly around a hole in the sheetlike element, on a first major surface of the sheetlike element. A support structure such as a grid array of noncollapsing structural posts is on a second major surface of the sheetlike element, and each of the posts is electrically connected to one of the active contacts. The grid array of posts and the grid array of active contacts are offset from one another so that an active contact is surrounded by several posts. The posts support the sheetlike element spaced away from a substrate to which the posts are attached. A microelectronic element having bump leads thereon may be engaged by contacting the bump leads with the active contacts, and deflecting the sheetlike element between the bump leads on one side and the posts on the other side. The assembly can be tested, and if found acceptable, the bump leads can be permanently bonded to the contacts.
Abstract:
A wiring board to be provided between a packaged electronic component having an integrated circuit and a mother board on which the packaged electronic component should be mounted, includes a base made of an insulating material, a first circuit pattern which is provided on a first surface of the base and has terminals connectable to terminals of the packaged electronic component for external connections, and a second circuit pattern which is provided on a second surface of the base opposite to the first surface thereof and has terminals connectable to terminals provided on the mother board.
Abstract:
A ball grid array package (BGA) according to the present invention has an interposer between a bond pad on the lower surface of the substrate and the solder ball. The interposer has a conductive portion in contact with the bond pad surrounded by a nonconductive or insulating portion. The conductive portion in contact with the bond pad is sufficiently constrained from widening during a subsequent reflow process by the presence of the nonconductive or insulating portion. The contact with the bond pad is sufficiently small to allow traces to pass near the bond pad substantially directly en route to another bond pad. The nonconductive portion also prevents subsequently-applied encapsulant from coming in contact with and contaminating the bond pad. The elevated surface of the interposer, i.e. the surface of the interposer furthest from the bond pad, supports the solder ball, and is sufficiently wide to support the solder ball without allowing the solder ball to come in contact with the traces. The solder ball and the trace routing on the lower surface of the substrate is in different planes, thereby allowing a simplified trace routing, but retaining and even increasing rigidity of the structure and coplanarity of the solder balls.
Abstract:
A method and apparatus are provided for mounting circuit elements on a printed wiring board, wherein an integrated circuit having terminals with a first interterminal pitch are mounted onto a first surface of a terminal density conversion board which converts the first interterminal pitch of the integrated circuit to terminals with a second interterminal pitch larger than the first interterminal pitch on a second surface of the terminal density conversion board; and the terminals on the second surface of the terminal density conversion board with the second interterminal pitch are mounted onto the printed wiring board.
Abstract:
A device and method for mounting a surface mount package onto a printed circuit board includes inserting a pin through a printed circuit board feedthrough for providing movement of the pin within the feedthrough. One end of the pin is soldered to conductive surfaces on the bottom side of the printed circuit board while the other end of the pin id soldered to a surface mount package pad. The package is mounted in a spaced relation with a printed circuit board top surface. The pin is soldered to the board conductive surface using a high temperature solder for forming a solder joint which remains solid during subsequent soldering using a low temperature solder such as a lead tin solder type. The pin is then soldered to the pad of the surface mount package using the low temperature lead tin solder for forming a solder joint between the pad and pin. The pin is sized for loosely fitting within the feedthrough and thus movement caused by a coefficient of thermal expansion mismatch between materials of the pad, pin, and printed circuit board is absorbed by movement of the pin within the feedthrough. As a result, stress relief is provided for the solder joints.
Abstract:
A dielectric resonant component includes at least one dielectric multistage resonator including one dielectric block, a plurality of inner conductor formation holes formed in the one dielectric block, an inner conductor formed on an inner surface of each of the inner conductor formation holes, and an outer conductor covering a substantially entire outer surface of the one dielectric block, the dielectric multistage resonator constituting a plurality of dielectric resonators in the one dielectric block; and a mount substrate fixedly mounted on the dielectric multistage resonator, for transmitting a signal transmission between each of the dielectric resonators of the dielectric multistage resonator and an external circuit board, when the dielectric resonant component is mounted on the external circuit board. The dielectric multistage resonator further includes a pair of input/output electrodes, and the mount substrate includes a unit for connecting the input/output electrodes of the dielectric multistage resonator to a pair of input/output electrodes formed on the circuit board.
Abstract:
A customizeable interconnect device is provided for coupling a base component to a stacked insert component. The interconnect device is customizeable to provide connection between various types of components, regardless of whether the components are leaded or leadless, or whether the lead pitch is large or small. The interconnect device is fully customized by modifying a retainer, a base and/or a housing. Each part (i.e., base, retainer and housing) is coupled together as a modular assembly, wherein the base is customizeable to fit the lead arrangement of the base component, and the retainer is customizeable to fit the lead arrangement of a daughter board edge connector. One or more daughter boards are inserted into corresponding housing units in stacked, spaced arrangement over a base component to enhance interconnect density in a three-dimensional fashion.