Abstract:
A printed circuit board (PCB) assembly includes a first PCB and a second PCB disposed substantially parallel and opposite to each other, such that a second side of the first PCB is opposite to a first side of the second PCB; wherein the second PCB has a first set of side connectors on its first side and a second set of side connectors on its second side, configured for both electrical power supply to and signal communication with the second PCB; the second PCB both electrically and mechanically connected to the second side of the first PCB via a first elastomeric connector; and the second PCB electrically connected to the first PCB via its second set of side connectors and a flexible electrical connector that is electrically connected to the second set of side connectors and the first PCB.
Abstract:
Examples herein include modules and connections for modules to couple to a computing device. An example module includes a housing comprising an end to couple to a computing device, multiple capacitive pads that each include data contacts to enable data transfer, a power contact pad to provide or receive power, and a ground contact pad to couple to ground. The ground contact pad is larger in size than the power contact pad, and the ground contact pad is positioned closer than the power contact pad to the end of the housing configured to couple to the computing device.
Abstract:
A connector includes an insulated housing having a slot and a transmission assembly located inside the insulated housing. The transmission assembly includes a main circuit board, an expanded circuit board, a plurality of first terminals and at least one second terminal. The expanded circuit board is stacked on the main circuit board and a first lateral side and a second lateral side of the expanded circuit board which are opposite to each other has a plurality of first electrical contacts and at least one second electrical contact, respectively. The first terminals and the at least one second terminal are plugged in the main circuit board. One ends of the first terminals are in electrical contact with the first electrical contacts respectively. The other ends of the first terminals bend and extend towards the second lateral side of the expanded circuit board.
Abstract:
Package assemblies including a die stack and related methods of use. The package assembly includes a substrate with a first surface, a second surface, and a third surface bordering a through-hole extending from the first surface to the second surface. The assembly further includes a die stack, a conductive layer, and a lid. The die stack includes a chip positioned inside the through-hole in the substrate. A section of the conductive layer is disposed on the third surface of the substrate. A portion of the lid is disposed between the first chip and the section of the conductive layer. The conductive layer is configured to be coupled with power, and the lid is configured to be coupled with ground. The portion of the lid may act as a first plate of a capacitor, and the section of the conductive layer may act as a second plate of the capacitor.
Abstract:
A cable assembly for interconnecting a plurality of circuit boards together by using a connector assembly connected to each of the circuit boards. The cable assembly includes a first cable having a first end part and a second cable having a second end part. A first periphery of the first end part has a plurality of first half vias that collectively form a column along a width direction of the connector assembly. A second periphery of the second end part has a plurality of second half vias that collectively form a column along the width direction of the connector assembly. The first and second end parts are coupled together to form a connecting unit, such that the first half vias and the second half vias are joined together to form full vias.
Abstract:
Embodiments of a silicon heat-dissipation package for compact electronic devices are described. In one aspect, a device includes first and second silicon cover plates. The first silicon cover plate has a first primary side and a second primary side opposite the first primary side thereof. The second silicon cover plate has a first primary side and a second primary side opposite the first primary side thereof. The first primary side of the second silicon cover plate includes an indentation configured to accommodate an electronic device therein. The first primary side of the second silicon cover plate is configured to mate with the second primary side of the first silicon cover plate when the first silicon cover plate and the second silicon cover plate are joined together with the electronic device sandwiched therebetween.
Abstract:
A combined printed wiring board includes a multilayer printed wiring board having an outermost insulation layer, and a wiring film fixed to a portion of the outermost insulation layer of the multilayer printed wiring board. The wiring film includes dense-pitch pads formed on a semiconductor-mounting surface of the wiring film, the multilayer printed wiring board has sparse-pitch pads formed on a semiconductor-mounting surface of the multilayer printed wiring board, the dense-pitch pads are formed to facilitate electrical connection between a first semiconductor element and a second semiconductor element, and the sparse-pitch pads are formed to facilitate electrical connection between the multilayer printed wiring board and the first semiconductor element and/or the second semiconductor element.
Abstract:
A touch sensor device is provided that uses a flexible circuit substrate to provide an improved input device. Specifically, the present invention uses a touch sensor controller affixed to the flexible circuit substrate, which is coupled to a sensor component to provide a flexible, reliable and cost effective touch sensor suitable for a wide variety of applications. In one embodiment the touch sensor uses a flexible circuit substrate that provides relatively high temperature resistance. This allows the touch sensor controller to be affixed using reliable techniques, such as various types of soldering. The sensor component can comprise a relatively low-temperature-resistant substrate that can provide a cost effective solution. Taken together, this embodiment of the touch sensor provides reliability and flexibility at relatively low cost.
Abstract:
A three dimensional package includes a substrate having a columnar part including a sidewall, and stairs or steps arranged along the sidewall of the columnar part in the form of multiple helixes twisted around the columnar part. Semiconductor integrated circuits (IC dies) are attached on one or both of the supporting surfaces of the stairs. The columnar part, the stairs and the IC dies can be encapsulated with a mold compound.