Abstract:
In some embodiments, a ceramic interposer with silicon voltage regulator and array capacitor combination for integrated circuit packages is presented. In this regard, an apparatus is introduced having a bowl-shaped ceramic interposer containing conductive traces, one or more silicon voltage regulator(s) coupled with contacts on a first surface of the ceramic interposer, and one or more array capacitor(s) coupled with contacts on a second surface of the ceramic interposer. Other embodiments are also disclosed and claimed.
Abstract:
According to one embodiment, there is provided a printed-wiring board, includes a first base member including a component mounting face, a first electronic component with a through-electrode mounted on the component mounting face, a second base member stacked on the first base member via an insulating layer covering the first electronic component, a hole part provided in the second base member and communicating with the through-electrode of the first electronic component, and a second electronic component mounted on the second base member and circuit-connected directly to the through-electrode via the hole part.
Abstract:
A semiconductor system having a substrate (101) including a rigid insulating interposer (110) with a high modulus and a top (140) and a bottom (150) low-modulus tape with flip-attached semiconductor chips (120, 130). The assembled chips, with the passive surfaces facing each other, are located in an opening (114) of the interposer, which has a thickness (111) equal to or smaller than the sum of the assembled two chips. Adhesive material (160) holds the tapes parallel to the interposer and the chip surfaces together. Solder balls (180) and discrete components (170) may be attached to the outside surfaces of the tapes.
Abstract:
Disclosed are an integrated circuit component capable of simply mounting at low cost a chip part which adjusts impedance of wiring patterns as well as capable of effectively reducing switching noise from an integrated circuit, and a method for mounting the chip part. The integrated circuit component of the present invention has a constitution that a bypass capacitor is mounted on a wiring board side of a gap between the wiring board and an LSI chip. Therefore, as compared with a case where the capacitor is mounted on the LSI chip side, a transmission path through the capacitor can be extremely shortened. As a result, inductance components of the feeder line can be reduced, so that a response delay of power transmitted through the feeder line can be sufficiently suppressed.
Abstract:
The present invention provides a system and method for selectively stacking and interconnecting leaded packaged integrated circuit devices with connections between the feet of leads of an upper IC element and the upper shoulder of leads of a lower IC element while traces that implement stacking-related intra-stack connections between the constituent ICs are implemented in interposers or carrier structures oriented along the leaded sides of the stack and which extend beyond the perimeter of the feet of the leads of the constituent ICs or beyond the connective pads of the interposer. This leaves open to air flow, most of the transit section of the lower lead for cooling, but provides a less complex board structure for implementation of intra-stack connections.
Abstract:
The invention relates to a method in which components (101, 102) are provided, movement elements (104) are in each case applied to surfaces of a number of the components (101), and the components (101, 102) are stacked, so that one or a plurality of the movement elements (104) are situated between adjacent components (101, 102) and the components (101, 102) are held in their position by connecting elements (103).
Abstract:
Provided is a stacked ball grid array (BGA) semiconductor package. The stacked BGA semiconductor package includes: a single semiconductor package having landings provided in depressed grooves of both sides thereof, wherein the landings include a conductive material, and a substrate having a semiconductor chip disposed on the substrate; another semiconductor package formed above the single semiconductor package and having landing pads formed in a lower surface of the substrate thereof; and solder balls connecting the landing pads to the landings.
Abstract:
An electrical component is mounted on a carrier printed circuit board. A first header connector connects the carrier printed circuit board to a printed circuit board on one side of the electrical component. A second header connector connects the carrier printed circuit board to the printed circuit board on the opposite side of the electrical component. The carrier printed circuit board and the printed circuit board are connected so that the electrical component is sandwiched between the carrier printed circuit board and the printed circuit board. The carrier printed circuit board, the first header connector, and the second header connector protect the electrical component from impact and mechanical stress. The carrier printed circuit board redistributes the electrical connection of the electrical component.
Abstract:
A method for a low profile multi-IC chip package for high-speed applications comprises a connector for electrically connecting the equivalent outer leads of a set of stacked primary semiconductor packages. In one embodiment, the connector comprises a two-part sheet of flexible insulative polymer with buses formed on one side. In another embodiment, the connector comprises multiple buses formed from conductive polymer. In further embodiments, the primary packages are stacked within a cage and have their outer leads in unattached contact with buses within the cage or, alternatively, are directly fixed to leads or pads on the host circuit board.
Abstract:
A method, apparatus, and system, the apparatus including, in some embodiments, a printed circuit board (PCB), an integrated circuit (IC) positioned over and electrically connected to the PCB, a chip positioned between the PCB and the IC, and a closed boundary barrier between and contacting the PCB and the IC to define an inner containment area that completely contains the chip within the inner containment area.