Abstract:
Optopair for use in sensors and analyzers of gases such as methane, and a fabrication method therefor is disclosed. It comprises: a) an LED, either cascaded or not, having at least one radiation emitting area, whose spectral maximum is de-tuned from the maximum absorption spectrum line of the gas absorption spectral band; and b) a Photodetector, whose responsivity spectral maximum can be either de-tuned from, or alternatively completely correspond to the maximum absorption spectrum line of the absorption spectral band of the gas. Modeling the LED emission and Photodetector responsivity spectra and minimizing the temperature sensitivity of the optopair based on the technical requirements of the optopair signal registration circuitry, once the spectral characteristics of the LED and Photodetector materials and the temperature dependencies of said spectral characteristics are determined, provides the LED de-tuned emission and Photodetector responsivity target peaks respectively.
Abstract:
A system and method are disclosed for gas sensing over a wide tunable wavelength range provided by one or more quantum cascade lasers. A laser beam is generated within the wide tunable wavelength range, which is given by the sum of the wavelength ranges from the individual lasers. Gas sensing or detection is achieved by obtaining an infrared absorption spectrum for a sample contained in one or more cells having different path lengths for the laser beam.
Abstract:
Infrared radiation device and production method, capable of preventing electrode degradation by heat are provided. Infrared radiation device includes substrate, insulation layer, heat generating layer, electrode, foundation portion and electric conductor. Substrate has cavity exposing part of back surface of insulation layer. Foundation portion exists on inside and outside of vertical projection area (projection direction of which is along thickness direction of insulation layer) of opening edge, on surface of substrate, of cavity. Electric conductor is provided on surface of foundation portion. End of heat generating layer is provided as cover covering electric conductor. Electrode is in contact with surface of covering outside vertical projection area. Conductor has higher melting point than that of electrode and smaller electrical resistance than those of portion and layer.
Abstract:
There is described an apparatus for analyzing, identifying or imaging a target. The apparatus comprises a laser system which generates first and second laser beams having respective different frequencies, and directs the first and second laser beams along an optical path to a photoconductive material. An antenna structure is formed on the photoconductive material, the antenna structure comprises a first antenna for emitting electromagnetic radiation having a frequency dependent on the difference between said respective different frequencies of the first and second laser beams and a second antenna for generating a detection signal. A processor processes the detection signal to analyze, identify or image the target. The laser system is arranged such that the first and second laser beams overlap in a region of a surface of the photoconductive material having at least part of the first and second antennas formed thereon.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
An intracavity laser absorption infrared spectroscopy system for detecting trace analytes in vapor samples. The system uses a spectrometer in communications with control electronics, wherein the control electronics contain an analyte database that contains absorption profiles for each analyte the system is used to detect. The system can not only detect the presence of specific analytes, but identify them as well. The spectrometer uses a hollow cavity waveguide that creates a continuous loop inside of the device, thus creating a large path length and eliminating the need to mechanically adjust the path length to achieve a high Q-factor. In a preferred embodiment, the laser source may serve as the detector, thus eliminating the need for a separate detector.
Abstract:
An intracavity laser absorption infrared spectroscopy system for detecting trace analytes in vapor samples. The system uses a spectrometer in communications with control electronics, wherein the control electronics contain an analyte database that contains absorption profiles for each analyte the system is used to detect. The system can not only detect the presence of specific analytes, but identify them as well. The spectrometer uses a hollow cavity waveguide that creates a continuous loop inside of the device, thus creating a large path length and eliminating the need to mechanically adjust the path length to achieve a high Q-factor. In a preferred embodiment, the laser source may serve as the detector, thus eliminating the need for a separate detector.
Abstract:
A method and system based on spectral domain interferometry for detecting intense THz electric field, allowing the use of thick crystal for spectroscopic purposes, in order to makes long temporal scans for increased spectral resolutions, and overcoming the limitation of over-rotation for presently available high power THz sources. Using this method and system the phase difference of approximately 8898π can be measured, which is 18000 times higher than the phase difference measured by electro-optic sampling (π/2).
Abstract:
A spectroscopy system comprising at least two laser modules, each of the laser modules including a laser cavity, a quantum cascade gain chip for amplifying light within the laser cavity, and a tuning element for controlling a wavelength of light generated by the modules. Combining optics are used to combine the light generated by the at least two laser modules into a single beam and a sample detector detects the single beam returning from a sample.
Abstract:
Highly advantageous spectrometer systems and associated methods are disclosed which utilize phase modulation in conjunction with first and second harmonic detection to reduce or eliminate negative impacts from interference patterns.