Abstract:
The present invention is directed to a method and device to generate a chemical signature for a mixture of analytes. The present invention involves using a SPME surface to one or both absorb and adsorb the mixture of analytes. In an embodiment of the invention, the surface is then exposed to different temperature ionizing species chosen with appropriate spatial resolution to desorb a chemical signature for the mixture of analytes.
Abstract:
A microsecond time-resolved mass spectrometry device and method of using desorption electrospray ionization (10) was described for the kinetic study of fast reactions. The device includes a liquid jet generator (64) that is configured to emit a continuous liquid jet (50) having a length. An ambient ionization source (10) is directed toward a selected variable location along the continuous liquid jet (50) to desorb at least a portion of the continuous liquid jet (50). A mass analyzer (30) analyzes a mass-to-charge ratio of an ionized sample that is within the desorbed portion of the continuous liquid jet (50). The acquired mass spectra reflect the reaction progress in different reaction times and, therefore, may be used to derive the reaction rate.
Abstract:
In a mass cytometer or mass spectrometer, a sample of elemental tagged particles is transferred from a dispersion to a gas flow through a carrier aerosol spray for atomization and ionization by inductively coupled plasma (ICP) source. The configuration of the sample transfer apparatus allow for total consumption of the sample by passing the sample spray through a deceleration stage to decelerate the spray of particles from its high velocity expansion. Following the deceleration stage, the decelerated sample of particles can be accelerated and focused through an acceleration stage for transferring into the ICP. This effectively improves the particle transfer between the sample spray and the ICP.
Abstract:
An object is to mix multiple liquids sufficiently and then nebulize the mixed liquids while maintaining the nebulizing efficiency. A nebulizer includes a first inner tube disposed inside an outer tube and having therein a first sample passage through which a first liquid sample flows, a second inner tube disposed inside the outer tube in parallel with the first inner tube and having therein a second sample passage through which a second liquid sample flows, a membranous member disposed with a gap between the membranous member and sample outlets formed at respective ends of the inner tubes. The gap forms mixing space in which a gas passing through a gas passage converts the first and second liquid samples flowing out of the sample outlets into droplets and mixes the droplets and the membranous member has multiple holes through which the mixed liquid samples pass along with the gas.
Abstract:
The invention generally relates to methods and devices for synchronization of ion generation with cycling of a discontinuous atmospheric interface. In certain embodiments, the invention provides a system for analyzing a sample that includes a mass spectrometry probe that generates sample ions, a discontinuous atmospheric interface, and a mass analyzer, in which the system is configured such that ion formation is synchronized with cycling of the discontinuous atmospheric interface.
Abstract:
In a mass cytometer or mass spectrometer, a sample of elemental tagged particles is transferred from a dispersion to a gas flow through a carrier aerosol spray for atomization and ionization by inductively coupled plasma (ICP) source. The configuration of the sample transfer apparatus allow for total consumption of the sample by passing the sample spray through a deceleration stage to decelerate the spray of particles from its high velocity expansion. Following the deceleration stage, the decelerated sample of particles can be accelerated and focused through an acceleration stage for transferring into the ICP. This effectively improves the particle transfer between the sample spray and the ICP.
Abstract:
Methods and systems for generating ions from a liquid sample for mass spectrometry are provided herein. In various aspects, the methods and systems can enhance the break-up of a jet of the liquid sample upon injection into an ionization chamber. In some aspects, methods and systems perturb the liquid sample prior to discharge to increase the internal energy of the sample so as to enhance the formation of liquid droplets when the liquid sample is injected into the ionization chamber.
Abstract:
The present invention is directed to a method and device to generate a chemical signature for a mixture of analytes. The present invention involves using a SPME surface to one or both absorb and adsorb the mixture of analytes. In an embodiment of the invention, the surface is then exposed to different temperature ionizing species chosen with appropriate spatial resolution to desorb a chemical signature for the mixture of analytes.
Abstract:
Techniques are provided for generating charged droplets of liquid entrained within a gas flow within a vacuum chamber and for controlling the gas flow. The gas flow with the entrained charged droplets of liquid is jetted into the vacuum chamber along a predetermined jetting axis. The gas jet is received within a gas conduit housed within the vacuum chamber and having a conduit bore coaxial with the predetermined jetting axis. The received gas jet is caused to be restrained to form a laminar gas flow entrained with charged droplets inside of the gas conduit for guiding the entrained charged droplets therealong.
Abstract:
A method for controlling the supply of ions from a liquid chromatograph through an ion source into a mass spectrometer. The ion source is foreseen to be either an electrospray ionization sources or an impaction spraying ion sources. The ion source can be operated in two modes: a mode in which ions are supplied into the mass spectrometer and a mode in which ions are prevented to be supplied into the mass spectrometer. In this latter mode, the supply of ions into the mass spectrometer is prevented by reducing the potential applied to the ionization source, reducing the nebulizer gas flow and/or increasing the cone gas flow.