Abstract:
A signal transmission board includes a substrate, a conductive via, a cavity and a connecting hole. The substrate has a first external surface and a second external surface. The conductive via penetrating through the substrate has a first end and a second end. The first end is disposed on the first external surface, and the second end is disposed on the second external surface. The cavity is disposed in the substrate and penetrated by the conductive via. The connecting hole disposed on the substrate has a third end and a fourth end. The third end is disposed on the first external surface, and the fourth end communicates with the cavity.
Abstract:
A multilayer circuit board includes a first substrate and a second substrate in stack. The first substrate is provided with two first pads, two second pads, and two first sub-circuits. The first pads and the second pads are electrically connected to the first sub-circuits. The second substrate has a top surface, a bottom surface, a lateral edge, and two openings. The bottom surface of the second substrate is attached to the top surface of the first substrate. The openings extend from the top surface to the bottom surface of the second substrate. The first pads of the first substrate are in the opening of the second substrate; the second pads of the first substrate are not covered by the second substrate. The second substrate is further provided with a pad on the top surface and a second sub-circuit electrically connected to the pad of the second substrate.
Abstract:
A method for manufacturing a printed wiring board includes forming, on a surface of an insulating layer, a patterned catalyst film including a catalyst for electroless plating such that the patterned catalyst film has a pattern corresponding to a conductor circuit, and applying electroless plating on the patterned catalyst film such that a conductor metal is deposited on the patterned catalyst film and that the conductor circuit is formed on the surface of the insulating layer.
Abstract:
A microelectronic socket having a two piece construction, wherein a first piece comprises a conductive socket substrate and the second piece comprises an insulative insert. The conductive socket substrate has a first surface, a second surface, and at least one opening extending therebetween. The insulative insert has a base portion with at least one projection extending therefrom. The insulative insert is mated with the conductive socket substrate such that the at least one projection resides within a corresponding conductive socket substrate opening. The insulative insert further includes a plurality of vias, wherein at least one of the plurality of vias extends through the insulative base and through an insulative insert projection, wherein a contact may be disposed within the via.
Abstract:
A selective segment via plating process for manufacturing a circuit board selectively interconnects inner conductive layers as separate segments within the same via. Plating resist is applied to a conductive layer of an inner core and then stripped off after an electroless plating process. Stripping of the electroless plating on the plating resist results in a plating discontinuity on the via wall. In a subsequent electroplating process, the plug non-conductive layer can not be plated due to the plating discontinuity. The resulting circuit board structure has separate electrically interconnected segments within the via.
Abstract:
An object of the invention is to provide a simple method capable of easily forming a metal film on a surface of a perforated substrate that is adjacent to the hole in the substrate. The metal film forming method includes a step of heating a perforated substrate having a hole while a surface of the substrate adjacent to the hole is in contact with a conductive ink containing a metal salt and a reducing agent.
Abstract:
A printed wiring board includes three or more than three through holes. An inner wall of the through hole is covered by conductive coating. Same size leads of an electronic component are inserted into the through holes. The through holes are soldered by dip soldering the printed wiring board in melting solder. The through holes have two or more diameters. The diameter of the through hole having more adjacent through holes is not larger than the diameter of the through hole having less adjacent through holes.
Abstract:
Disclosed is a via structure in a multi-layer substrate, comprising a first metal layer, a dielectric layer and a second metal layer. The first metal layer has an upper surface. The dielectric layer covers the first metal layer in which a via is opened to expose the upper surface. The second metal layer is formed in the via and contacts an upper surface and an inclined wall of the via. A contacting surface of the second metal layer has a top line lower than the upper edge of the inclined wall. Alternatively, the second metal layer can be formed on the dielectric layer as being a metal line simultaneously as formed in the via as being a pad. The metal line and the pad are connected electronically. The aforesaid metal second layer can be formed in the via and on the dielectric layer by a metal lift-off process.
Abstract:
A surface mount electrical interconnect adapted to provide an interface between solder balls on a BGA device and a PCB. The electrical interconnect includes a socket substrate with a first surface, a second surface, and a plurality of openings sized and configured to receive the solder balls on the BGA device. A plurality of electrically conductive contact tabs are bonded to the first surface of the socket substrate so that contact tips on the contact tabs extend into the openings. The contact tips electrically couple with the BGA device when the solder balls are positioned in the openings. Vias are located in the openings that electrically couple the contact tabs to contact pads located proximate the second surface of the socket substrate. Solder balls are bonded to the contact pad that are adapted to electrically and mechanically couple the electrical interconnect to the PCB.
Abstract:
Embodiments of the present invention provide a wiring substrate having a structure where a plurality of projection electrodes are arranged within an electrode formation region on a substrate main surface. At least one among a plurality of the projection electrodes is a variant projection electrode which has a recess portion on an upper surface, an outer diameter at the upper end that is larger than an outer diameter at the lower end, and a reverse trapezoidal cross-section shape. Embodiments of the present invention also provide methods for manufacturing wiring substrates having one or more of said variant projection electrode.