Abstract:
A variety of toy polariscopes are simpler in design and less costly than precision instruments used in scientific research and stress analysis of materials and structures. The toy polariscopes are designed for a variety of objects that may exhibit photoelastic properties such as glass, plastic, Plexiglas, gel candle material and other gels, and even edible photoelastic objects. They are specially designed for objects of various sizes with a variety of purposes such as objects to enhance learning in a variety of conditions and experiences. Special objects are designed to go with the toy polariscopes such as edible and inedible photoelastic objects, photoelastic candle material, a variety of photoelastic/photoplastic stands capable of a variety of displays in interaction with other designed photoelastic objects capable of a variety of interaction and displays. Other optical phenomena may also be observed.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; measuring the intensity or brightness of pixels in a target area; accumulating the intensity or brightness values of the pixels in the target area; and determining a pixel value representative of the intensity or brightness of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements are spaced apart from a central source fiber optic/element and received light reflected from the surface of the object is measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A gas measurement system of this invention includes a detector assembly having a beamsplitter adapted to separate infrared radiation into a first beam and a second beam and a mirror adapted to receive the first beam from the beamsplitter. The first and second beams are directed to first and second detectors that are disposed in a common plane. In one embodiment, the optical elements are provided on or in an optical block. In another embodiment, the gas measurement system includes a housing that contains an infrared absorption gas measurement assembly, a luminescence quenching gas measurement assembly, and a processor that is programmed to measure gas constituents of a gas flow based on an output of the infrared absorption gas measurement assembly and the luminescence quenching gas measurement assembly.
Abstract:
Disclosed are improvements in ellipsometer and the like systems capable of operating in the Vacuum-Ultra-Violet (VUV) to Near Infrared (NIR) wavelength range, and methodology of use.
Abstract:
A method and apparatus for producing with a gas discharge laser an output laser beam comprising output laser light pulses, for delivery as a light source to a utilizing tool is disclosed which may comprise a beam path and a beam homogenizer in the beam path. The beam homogenizer may comprise at least one beam image inverter or spatial rotator, which may comprise a spatial coherency cell position shifter. The homogenizer may comprise a delay path which is longer than, but approximately the same delay as the temporal coherence length of the source beam. The homogenizer may comprise a pair of conjoined dove prisms having a partially reflective coating at the conjoined surfaces of each, a right triangle prism comprising a hypotenuse face facing the source beam and fully reflective adjoining side faces or an isosceles triangle prism having a face facing the source beam and fully reflective adjoining side faces or combinations of these, which may serve as a source beam multiple alternating inverted image creating mechanism. The beam path may be part of a bandwidth measuring the bandwidths of an output laser beam comprising output laser light in the range of below 500 femtometers at accuracies within tens of femtometers. The homogenizer may comprise a rotating diffuser which may be a ground glass diffuser which may also be etched. The wavemeter may also comprise a collimator in the beam path collimating the diffused light; a confocal etalon creating an output based upon the collimated light entering the confocal etalon; and a detector detecting the output of the confocal etalon and may also comprise a scanning mechanism scanning the angle of incidence of the collimated light entering the confocal etalon which may scan the collimated light across the confocal etalon or scan the etalon across the collimated light, and may comprise an acousto-optical scanner. The confocal etalon may have a free spectral range approximately equal to the E95 width of the beam being measured. The detector may comprise a photomultiplier detecting an intensity pattern of the output of the confocal etalon.
Abstract:
Real time high speed high resolution hyper-spectral imaging. (a) electromagnetic radiation collimating element (16), collimating electromagnetic radiation (44) emitted by objects (12) in a scene or a sample (14); (b) optical interferometer (18), receiving and dividing collimated object emission beam, generating interference images, and piezoelectrically determining and changing magnitude of optical path difference of divided collimated object emission beam; optical interferometer (18) includes: beam splitter (20′), fixed mirror (22), movable mirror (24), piezoelectric motor (26), displacing movable mirror (24) along axis (60), distance change feedback sensor (28), sensing and measuring change in distance of movable mirror (24) along axis (60), piezoelectric motor controller (30), actuating and controlling piezoelectric motor (26); and thermo-mechanically stable optical interferometer mount (32A); (c) camera optics (34), focusing interference images of each optical path difference; (d) detector (36), recording interference images; processing unit (38), and (f) display (40).
Abstract:
In another form of the present invention, there is provided a Raman probe comprising: a first optical fiber for receiving laser excitation light from a light source and transmitting the same; a first filter for receiving light from the first optical fiber and adapted to pass the laser excitation light and to block spurious signals associated with the light; a second filter for receiving light from the first filter and adapted to direct the light toward the specimen; focusing apparatus for receiving the light from the second filter, focusing the light on a specimen so as to generate the Raman signal, and returning the Raman signal to the second filter; wherein the second filter is further configured so that when the second filter receives the Raman signal from the focusing apparatus, the second filter filters out unwanted laser excitation light before directing the Raman signal to a second optical fiber; and a second optical fiber for receiving the Raman signal from the second filter and transmitting the same to a light analyzer. In another form of the present invention, there is provided a Raman probe comprising: a light source for generating laser excitation light; focusing apparatus for receiving the laser excitation light from the light source, focusing the laser excitation light on a specimen so as to generate the Raman signal, and returning the Raman signal to a light analyzer; and a light analyzer for analyzing the Raman signature of the specimen, whereby to identify the specimen; wherein the focusing apparatus is configured to permit the specimen to reside in a vial receptacle or at a target location remote from the vial receptacle. In another form of the present invention, there is provided a method for conducting Raman spectroscopy of a specimen, comprising: generating laser excitation light using a light source; passing the laser excitation light through a first filter so as to block spurious signals associated with the light; passing the laser excitation light through a second filter so as to direct the light toward the specimen; receiving the light from the second filter, focusing the light on a specimen so as to generate the Raman signal, and returning the Raman signal to the second filter; wherein the second filter is further configured so that when the second filter receives the Raman signal from the specimen, the second filter filters out unwanted laser excitation light; passing the filtered light received from the second filter to a light analyzer; and analyzing the Raman signature of the specimen so as to identify the specimen. In another form of the present invention, there is provided a Raman probe comprising: a housing; a light source disposed within the housing for generating laser excitation light; focusing apparatus disposed within the housing for receiving the laser excitation light from the light source, focusing the laser excitation light on a specimen so as to generate the Raman signal, and returning the Raman signal to a light analyzer; and a light analyzer disposed within the housing for analyzing the Raman signature of the specimen, whereby to identify the specimen; wherein the focusing apparatus is configured to permit the specimen to reside at a target location remote from the housing; and further comprising an optical shield mounted to the housing so as to be disposed between the specimen and the user, whereby to optically shield the user from the light source. In another form of the present invention, there is provided a Raman probe comprising: a housing; a light source disposed within the housing for generating laser excitation light; focusing apparatus disposed within the housing for receiving the laser excitation light from the light source, focusing the laser excitation light on a specimen so as to generate the Raman signal, and returning the Raman signal to a light analyzer; and a light analyzer disposed within the housing for analyzing the Raman signature of the specimen, whereby to identify the specimen; wherein the focusing apparatus is configured to permit the specimen to reside at a target location remote from the housing; and further comprising a camera mounted to the housing so that its field of view encompasses the target location, and a display mounted to the housing for displaying the image captured by the camera, whereby to permit the user to position the probe relative to the specimen while watching the display.
Abstract:
A color measurement instrument includes a housing and illuminators, a two-dimensional photodetector array, and an optics system within the housing. A UV filter wheel closes the housing to prevent contaminants from entering the housing. The filter wheel supports UV filters and non-UV glass that can be selectively aligned with the illuminators. The photodetectors can be read in parallel, and each photodetector includes a unique spectral filter. The optics system delivers light from the sample target area equally to each of the photodetectors.
Abstract:
A hand-held portable modular spectrometer unit. The unit includes a detachable head containing a light source and optical components for detecting spectral information from light reflected from or transmitted through a target and a processor for converting the detected spectral information into digital information. The unit also includes a plug-in rechargeable power supply and a control module for controlling the components in the measurement head. The controller includes a computer processor for analyzing the digital information produced by the measurement head and a display monitor for displaying spectral information produced by the control unit. In preferred embodiments the plug-in rechargeable power supply is a 12-volt off-the-shelf power-tool rechargeable battery unit. In preferred embodiments several measuring heads are available. These include a gas cell measuring head, a surface reflectance measuring head that includes and integrating sphere, a specular reflectance measuring head, a grazing angle measuring head, an attenuated total reflectance measuring head, a diffuse reflection measuring head, a non-volatile residues measuring head, a liquid transmission cell measuring head and a fluorescence measuring head. Each of these measurement heads includes a spectrometer. Several types of spectrometers are available including those based on filters, prisms, gratings and interferometers. The unit can operate in a wide range of wavelengths including the infrared, visible and ultraviolet spectral ranges.