Abstract:
A portable system and method for analyzing biological tissue samples and detecting analytes associated with tissue oxygenation using a conformal filter. A conformal filter, which may comprise a tunable filter, is configured to filter interacted photons conforming to a spectral shape correlated with an analyte of interest. Conformal filter configurations may be selected by consulting a modified look-up table associated with an analyte. An iterative methodology may be used to calibrate a conformal design for an analyte of interest, refine a previous conformal filter design for an analyte of interest, and/or generate a new conformal filter design for an analyte of interest.
Abstract:
A portable spectrometer device includes an illumination source for directing at a sample, and a tapered light pipe (TLP) for capturing light interacting with the sample at a first focal ratio and for delivering the light at a second focal ratio lower than the first focal ratio. A linearly variable filter (LVF) separates the captured. light into a spectrum of constituent wavelength signals; and a detector array, including a plurality of pixels, each of the plurality of pixels disposed to receive at least a portion of a plurality of the constituent wavelength signals provides a power reading for each constituent wavelength. Preferably, the TLP is lensed at one end, and recessed in a protective boot with stepped inner walls. The gap between the TLP and LVF is minimized to further enhance resolution and robustness.
Abstract:
A handheld LIBS spectrometer system features an optics stage moveable with respect to a housing and including a laser focusing lens. A laser source is mounted in the housing for directing a laser beam to a sample via the laser focusing lens. A detection fiber is mounted in the housing and is fixed relative thereto. A first mirror is fixed relative to the housing and includes an aperture for the laser beam. This mirror is oriented to re-direct plasma radiation for delivery to the detection fiber. A controller subsystem is responsive to the output of a spectrometer subsystem and is configured to control the laser source and the optics stage.
Abstract:
An approach to noninvasively and remotely detect the presence, location, and/or quantity of a target substance in a scene via a spectral imaging system comprising a spectral filter array and image capture array. For a chosen target substance, a spectral filter array is provided that is sensitive to selected wavelengths characterizing the electromagnetic spectrum of the target substance. Elements of the image capture array are optically aligned with elements of the spectral filter array to simultaneously capture spectrally filtered images. These filtered images identify the spectrum of the target substance. Program instructions analyze the acquired images to compute information about the target substance throughout the scene. A color-coded output image may be displayed on a smartphone or computing device to indicate spatial and quantitative information about the detected target substance. The system desirably includes a library of interchangeable spectral filter arrays, each sensitive to one or more target substances.
Abstract:
A diffuse optical spectroscopic imaging (DOSI) apparatus for tissue spectroscopy measures absorption and scattering properties of tissue using multi-frequency frequency domain photon migration in a modular or networkable platform to provide full broadband information content. The apparatus includes: a broadband signal generator; a driver having an input coupled to the signal generator; a light source coupled to the driver, the light source for exposing the tissue to broadband modulated light at a plurality of wavelengths; an optical detector for receiving returned light from the tissue; an amplitude detection circuit communicated to the optical detector; a phase detection circuit communicated to the optical detector; and a plurality of filters and amplifiers, wherein the optical detector, amplitude detection circuit and phase detection circuit are interconnected with each other by corresponding ones of the plurality of filters and amplifiers to isolate signals and increase signal-to-noise ratio.
Abstract:
A modular device includes base and color sensing portions. The color sensing portion has a face, a controlled light source having a first channel between the light source and the face, and a color sensor arranged at a distal end of a second channel. The color sensor receives light reflected from the target surface and generates output signals representative of a surface color. The first and second channels extend at least 45 degrees apart from each other and respective to the face. The base portion communicates with the color sensor and a user interface enabling control input for the color sensor. The program further receives the output signals from the color sensing device and displays a first image of the detected color, and displays a second image of a user-selected color beside the first image. Color data values are further displayed corresponding to the difference between displayed colors.
Abstract:
A mobile microscopy device that can be integrated onto mobile imaging devices and mobile phones, and take images in different wavelengths to be used in various fields where microscopic investigation is needed, characterized in that it has a lens module placed into an imaging head and having at least one lens that carries out different magnification rates as needed, a filter module having at least one filter device to filler out reflected light being sent in different wavelengths so as to be sensed by the imaging sensors, and a led module having at least one led to send light beams in different wavelengths.
Abstract:
An analysis system (e.g., LIBS) includes a laser source generating a laser beam, a movable optic configured to move said laser beam to multiple locations on a sample, and a spectrometer responsive to photons emitted by the sample at those locations and having an output. A controller is responsive to a trigger signal and is configured in a moving spot cycle to adjust the moveable optic, activate the laser source sequentially generating photons at multiple locations on the sample, and process the spectrometer output at each location.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
A device (1) for analysing the material composition of an object (2) has a casing (3) with a handle (4), an operating trigger (5), a window (6) for abutment against the object to be analysed and a display (7) for displaying the analysis of the object. Mounted in the casing is a housing (11) having a base (12) to which it is pivotally connected about an axis (14) at one end (15). At the other end (16), a stepper motor (17) is provided for traversing the end across the base. This end has an opening (18) generally in alignment with an opening (19) in the housing in which the window is mounted. Within the housing, are mounted: a laser diode (21); a laser amplification crystal (22); a collimating lens (23); a laser focusing lens (24). The components are arranged on a laser projection axis (25), which passes out through the openings (18,19). A plane mirror (32) can receive light emitted by a plasma P excited at the surface of the object (2). Light from the plasma P is reflected in the direction (34) across the projection axis to a curved focusing mirror (35). From this mirror, the light is reflected again across the projection axis and focused on the end of an optical (fibre (37) set in an aperture (38) in the side wall (39) of the housing opposite from the reflecting mirror.