Abstract:
In a metal-clad laminate the requirements concerning the mechanical strength are functionally separated from the circuit connection requirement, so as to be able to bring the circuit connection, particularly for signals, "closer" to the electrotechnical characteristics of the chips. For this purpose and without taking account of the mechanical strength of the substrate, the layout miniaturization is optimized. In place of a circuit board (MCM), a laminate which can be built up to a circuit board is produced. The inventive laminate comprises an extremely thin foil with a plurality of extremely small holes simultaneously etched in an etching process. The hole diameter can be reduced by almost an order of magnitude (up to 20 .mu.m), which permits a sub-100 .mu.m technology. Such a laminate is not used as a mechanical support and is only provided for signal guidance. The effect of the miniaturization can be seen in the diameter for the plated-through holes. With a hole diameter reduction there is an increase in the current path density, which gives over 10000 plated-through holes per dm.sup.2. A drawing shows the compression ratio compared with standard technology.
Abstract:
A method for producing an electronic part mounting structure in which electronic parts such as IC packages are electrically connected to the surface of a printed circuit board utilizes a low-melting point metal. More particularly, the method provides an electronic part mounting structure capable of sufficiently and assuredly supplying solder to a portion between the terminal of a printed circuit board and the leads of an electric part while maintaining a predetermined thickness required to connect the printed circuit board and the electronic part to each other. By arranging the structure such that a gap, in which a solder layer having a predetermined thickness can be formed between the terminal of the printed circuit board and the lead of the electronic part to be connected to the terminal, is formed, the solder required to solder-connect the two elements can be sufficiently and assuredly supplied to the gap. Therefore, a reliable solder connection can be established.
Abstract:
Disclosed is a method for manufacturing a stacked circuitized flex structure. The structure is a laminate for Z-axis communication within a parallel processor. This laminate portion provides XY plane and Z-axis interconnection for inter-processor, inter-memory, inter-processor/memory element, and processor to memory bussing interconnection, and communication. Z-axis circuitization is carried out by providing vias and through holes in individual circuitized flex strips. These vias and through holes are circuited and plated. This is followed by filling the vias and through holes with solder and forming solder bumps at the tops and bottoms of the vias and through holes. A sticker sheet with clearance holes for the solder bumps is provided, and a plurality of the circuitized flex strips are laid up for lamination to form a stack of circuitized flexible strips. Lamination is carried out at elevated pressure and temperature to crush the solder bumps, bond, and homogenize solder bump material and fuse the sticker sheets. Next, the stack is cooled to solidify the homogenized solder bump material.
Abstract:
A method of forming chip resistors in which a resistive coating is applied to an insulating substrate which is subsequently divided up into single chip components includes the step of providing end terminations for the individual chip resistors before the sheet is divided up. This is achieved by forming a hole 13 in the substrate 11 at the position of each end termination and then coating the holes with an electrically conductive material 14 which electrically connects with the adjacent region of the resistive coating 12. In order to improve the solderability and the reliability of the end terminations the holes 13 may be filled with solder 15. The electrical value of the resistive element coating may then be adjusted to a precise value by trimming away some of the resistive element material with a laser. Finally, the substrate is divided up into the single chip resistor components.
Abstract:
Relates to the avoidance of electrical discontinuities arising in the production of two-sided printed circuit boards having plated-through-holes and particularly occurring in the use of solder for improving the electrical interconnections. Research disclosed that the cause of these discontinuities lay in the material of the boards surrounding the holes which either included entrapped gas or matter vaporizable under the high temperatures of the liquid solder applied to fill the holes to assure reliable plated-through-hole connections. A vacuum evaporation operation was incorporated in the fabrication process and found highly useful and efficient in the production of reliable hole connections substantially reducing if not completely eliminating any need to apply solder touch-ups to the boards thereafter. Specifically, the boards were treated prior to the soldering of the plated-through holes to a temperature of approximately 250* F while concurrently being exposed to a vacuum of approximately 10 2 mm Hg for a sufficient time to drive out of the boards all matter vaporizable under such conditions.
Abstract:
The present disclosure relates to a structure and a method for filling a via hole formed in a multilayer printed circuit board, and more particularly, to a structure and a method for filling a via hole formed in a multilayer printed circuit board, the structure and method enabling high-current transmission even in a narrow space in such a way that a via hole formed when a typical multilayer printed circuit board is manufactured is first filled with Cu and Ag plating, and the remaining vacant space is completely filled with a solder cream, thereby increasing the amount of conductors.
Abstract:
A printed circuit board (1) comprising an insulating layer (2) and a conducting layer (3) arranged on the insulating layer (2) and structured into a contact surface (4) for an electronic component (11) which is to be populated on the printed circuit board (1) has, in the area of the contact surface (4), at least one channel (8) that passes through the contact surface (4) and the insulating layer (2) and that is filled with a thermally conductive material. The process is characterized by the steps of preparing an insulating layer (2) and a conducting layer (3) connected with the insulating layer (2); producing at least one channel (8) passing through the conducting layer (2) and the insulating layer (3); lining the channel (8) with thermally conductive material; structuring the conducting layer (3) into a contact surface (4) for an electronic component (11) to be populated on the printed circuit board; preparing a solder deposit (9) at least minimally overlapping with the contact surface (4); setting down the electronic component (11); melting the solder, and cooling.
Abstract:
The present disclosure relates to systems and methods using thermal vias to increase the current-carrying capacity of conductive traces on a multilayered printed circuit board (PCB). In various embodiments, parameters associated with vias may be selected to control various electrical and thermal properties of the conductive trace. Such parameters include the via diameter, a plating thickness, a number of vias, a placement of the vias, an amount of conductive material to be added or removed from the conductive trace, a change in the resistance of the conductive trace, a change in a fusing measurement of the conductive trace, and the like.
Abstract:
A printed circuit board and a method for producing a printed circuit board consisting of at least two printed circuit board regions, wherein the printed circuit board regions each comprise at least one conductive layer and/or at least one conductive component, wherein printed circuit board regions to be connected to one another, in the region of in each case at least one lateral surface directly adjoining one another, are connected to one another by a mechanical coupling. At least one sub-region or connection port of the conductive layer, and/or a conductive element of the component are electrically conductively coupled to each other at the lateral surface.