Abstract:
For a first period of time, a higher radiofrequency power is applied to generate a plasma in exposure to a substrate, while applying low bias voltage at the substrate level. For a second period of time, a lower radiofrequency power is applied to generate the plasma, while applying high bias voltage at the substrate level. The first and second periods of time are repeated in an alternating and successive manner for an overall period of time necessary to produce a desired effect on the substrate. In some embodiments, the first period of time is shorter than the second period of time such that on a time-averaged basis the plasma has a greater ion density than radical density. In some embodiments, the first period of time is greater than the second period of time such that on a time-averaged basis the plasma has a lower ion density than radical density.
Abstract:
For a first period of time, a higher radiofrequency power is applied to generate a plasma in exposure to a substrate, while applying low bias voltage at the substrate level. For a second period of time, a lower radiofrequency power is applied to generate the plasma, while applying high bias voltage at the substrate level. The first and second periods of time are repeated in an alternating and successive manner for an overall period of time necessary to produce a desired effect on the substrate. In some embodiments, the first period of time is shorter than the second period of time such that on a time-averaged basis the plasma has a greater ion density than radical density. In some embodiments, the first period of time is greater than the second period of time such that on a time-averaged basis the plasma has a lower ion density than radical density.
Abstract:
Provided may include an electron beam generator, an image apparatus including the same, and an optical apparatus. The optical apparatus includes a first and second laser apparatuses providing a first and second laser beams on a substrate, and a first optical system provided between the first and second laser apparatuses and the substrate to focus the first and second laser beams. The first and second laser beams overlap with each other generating an interference beam, thereby decreasing a spot size of the interference beam to be smaller than a wavelength of each of the first and second laser beams at a focal point.
Abstract:
The present invention relates to a substrate etching device capable of improving uniformity of in-plane density of generated plasma to uniformly etch an entire substrate surface. A plasma etching device 1 includes a chamber 2 having a plasma generation space 3 and a processing space 4 set therein, a coil 30 disposed outside an upper body portion 6, a platen 40 disposed in the processing space 4 for placing a substrate K thereon, an etching gas supply mechanism 25 supplying an etching gas into the plasma generation space 3, a coil power supply mechanism 35 supplying RF power to the coil 30, and a platen power supply mechanism 45 supplying RF power to the platen 40. Further, a tapered plasma density adjusting member 20 is fixed on an inner wall of the chamber 2 between the plasma generation space 3 and the platen 40 and, in an upper portion of the chamber 2, a cylindrical core member 10 having a tapered portion formed thereon having a diameter decreasing toward a lower end surface thereof is arranged to extend downward.
Abstract:
An ion beam system includes a grid assembly having a substantially elliptical pattern of holes to steer an ion beam comprising a plurality of beamlets to generate an ion beam, wherein the ion current density profile of a cross-section of the ion beam is non-elliptical. The ion current density profile may have a single peak that is symmetric as to one of the two orthogonal axes of the cross-section of the ion beam. Alternatively, the single peak may be asymmetric as to the other of the two orthogonal axes of the cross-section of the ion beam. In another implementation, the ion current density profile may have two peaks on opposite sides of one of two orthogonal axes of the cross-section. Directing the ion beam on a rotating destination work-piece generates a substantially uniform rotationally integrated average ion current density at each point equidistant from the center of the destination work-piece.
Abstract:
An electron beam lithographic apparatus has an electron gun providing a beam of accelerated electrons, a mask stage adapted to hold a mask in a path of the beam of accelerated electrons, and a workpiece stage adapted to hold a workpiece in a path of electrons that have passed through the mask. The electron gun has a cathode having an electron emission surface, an anode adapted to be connected to a high-voltage power supply to provide an electric field between the cathode and the anode to accelerate electrons emitted from the cathode toward the anode, and a current-density-profile control grid disposed between the anode and the cathode. The current-density-profile control grid is configured to provide an electron gun that produces an electron beam having a non-uniform current density profile. A method of producing a micro-device includes generating a beam of charged particles having a non-uniform charged-particle current density, illuminating a mask with the beam of charged particles, and exposing a workpiece with charged particles from the beam of charged particles.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Extraktion von elektrischen Ladungsträgern aus einem Ladungsträgererzeugungsraum mit mindestens einer Elektrodenanordnung zur Extraktion von Ladungsträgern, wobei die mindestens eine Elektrodenanordnung mindestens eine erste Gitterelektrode und eine zweite Gitterelektrode mit korrespondierenden Öffnungen aufweist. Die erste und die zweite Gitterelektrode enthalten jeweils mindestens einen ersten elektrisch leitfähigen Gitterelektrodenbereich, wobei der mindestens eine erste Gitterelektrodenbereich der ersten Gitterelektrode in einer ersten Lage und der mindestens eine erste Gitterelektrodenbereich der zweiten Gitterelektrode in einer zweiten Lage ausgebildet sind. Die erste Lage und die zweite Lage sind innerhalb der Elektrodenanordnung in Teilchenaustrittsrichtung nacheinander angeordnet und voneinander durch einen ersten Abstand entlang der Teilchenaustrittsrichtung beabstandet, wobei der mindestens eine erste Gitterelektrodenbereich der ersten Gitterelektrode in der ersten Lage einen ersten elektrisch leitfähigen Lagenanteil bildet. Darüber hinaus ist in der ersten Lage ein zweiter elektrisch leitfähiger Lagenanteil ausgebildet, der elektrisch vom ersten Lagenanteil isoliert ist. Der zweite Lagenanteil wird durch mindestens einen zweiten elektrisch leitfähigen Gitterelektrodenbereich der ersten Gitterelektrode oder der zweiten Gitterelektrode gebildet und der zweite Lagenanteil ist elektrisch leitend mit dem mindestens einen ersten Gitterelektrodenbereich der zweiten Gitterelektrode verbunden. Die erfindungsgemäße Vorrichtung zur Extraktion von Ladungsträgern stellt somit eine elektrisch schaltbare Extraktionsgitterelektrodenanordnung dar, mit deren Hilfe die Strahlcharakteristik eines Teilchenstrahls aus extrahierten Ladungsträgern verändert werden kann.
Abstract:
본 발명은 금속팁을 포함하는 입자빔 소스; 상기 입자빔 소스로부터 집속된 입자빔을 수신하고, 이로부터 2차전자를 방출하는 마이크로채널 플레이트; 상기 마이크로채널 플레이트로부터 생성된 2차전자를 수신하고 이를 광신호로 변환하는 형광스크린; 상기 형광스크린으로부터 방출되는 광 데이터를 수집하는 영상수집장치; 및 상기 영상수집장치로부터 얻어지는 데이터를 처리하여 영상화하며, 상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해 공간 영역(spatial domain)에서 구현되는 저주파 통과필터(low pass filter)를 포함하여 이루어지는 영상처리장치;를 포함하는, 입자빔의 방출 이미지 획득 장치 및 이를 이용하여 입자빔의 방출 이미지를 획득하는 방법에 관한 것이다.
Abstract:
A grid assembly (114, 300) coupled to a discharge chamber of an ion beam source (102) is configured for steering ion beamlets emitted from the discharge chamber at circularly asymmetrically determined steering angles. The grid assembly 114, 300) includes at least a first and a second grid (302, 304) with a substantially circular pattern of holes, wherein each grid (302, 304) comprises holes positioned adjacent to one another. A plurality of the holes of the second grid (304) is positioned with offsets relative to corresponding holes in the first grid (302). Due to the offsets in the holes in the second grid (304), ions passing through the offset holes are electrostatically attracted towards the closest circumferential portion of the downstream offset holes. Thus, the trajectories of ions passing through the offset holes are altered. The beamlet is steered by predetermined asymmetric angles. The predetermined steering angles are dependent upon the hole offsets, voltage applied to the grids 302, 304), and the distance between the grids (302, 304).
Abstract:
The present invention relates to a substrate etching device capable of improving uniformity of in-plane density of generated plasma to uniformly etch an entire substrate surface. A plasma etching device 1 includes a chamber 2 having a plasma generation space 3 and a processing space 4 set therein, a coil 30 disposed outside an upper body portion 6, a platen 40 disposed in the processing space 4 for placing a substrate K thereon, an etching gas supply mechanism 25 supplying an etching gas into the plasma generation space 3, a coil power supply mechanism 35 supplying RF power to the coil 30, and a platen power supply mechanism 45 supplying RF power to the platen 40. Further, a tapered plasma density adjusting member 20 is fixed on an inner wall of the chamber 2 between the plasma generation space 3 and the platen 40 and, in an upper portion of the chamber 2, a cylindrical core member 10 having a tapered portion formed thereon having a diameter decreasing toward a lower end surface thereof is arranged to extend downward.