Abstract:
The method for producing a printed wiring board comprising the steps of preparing a conductive substrate, forming an insulating layer on one surface of the said substrate, forming at least one via hole in the insulating layer, thermally curing the insulating layer, and reducing at least one oxidized layer formed on the other conductive surface of the substrate during the curing operation. Alternatively, the thermal cure may be accomplished in an atmosphere (e.g., reducing gas, inactive gas, or mixtures thereof) not conducive to oxide formation on metallized circuit surfaces.
Abstract:
An opening is formed in resin by a laser beam so that a via hole is formed. Copper foil, the thickness of which is reduced to 3 &mgr;m by etching to lower the thermal conductivity, is used as a conformal mask. Therefore, an opening is formed in the resin and the number of irradiation of pulse-shape laser beam is reduced. Thus, occurence of undercut of the resin, which forms an interlayer insulating resin layer, can be prevented and the reliability of the connection of the via holes can be improved.
Abstract:
An electrically conductive circuit conductor 2 is disposed on an insulating resin substrate 1, an electrically conductive surface 3 of the circuit conductor is exposed from the resin substrate continuously in a longitudinal direction, and both side portions 4 of the conductive surface are covered and fixed by collar walls 5 of the resin substrate. A bus bar or an electrically conductive resin material is used as the circuit conductor 2. The bus bar 2 is insert-molded onto the resin substrate. The electrically conductive resin material is poured and solidified in a groove portion in the resin substrate. A contact terminal on a mating circuit side or electrical component side is brought into contact with the conductive surface of the circuit conductor 2. A second circuit board is laminated on the resin substrate, and an insertion hole for allowing the conductive surface of the circuit conductor 2 to be exposed is provided in the second circuit board, and the contact terminal is inserted in the insertion hole. Other contact terminals on the mating circuit side or electrical component side are brought into contact with circuits of the second circuit board.
Abstract:
An electrical connecting device including a first circuit board providing thereon with input/output terminals, each of the terminals having a tip surface coated with gallium and a second circuit board providing thereon with contact terminals, each of the terminals having a tip surface coated with indium or tin. A low-melting point alloy layer is formed by a mutual action between gallium and indium or tin, when the input/output terminals of the first circuit board are in contact with the respective terminals of the second circuit board and electrically connected to each other. The second metal layer includes a plurality of wire-like metal supports extending substantially perpendicular to the surface of the terminal and a low-melting point metal retained by the wire-like metal supports.
Abstract:
A new and improved printed circuit board tool and method of making and using it, to produce three dimensional printed circuit boards having grooves with strongly bonded or laminated metallic pads therein. The printed circuit board tool includes a metallized male mold substrate having a plurality of groove forming projections disposed in the substrate surface. The method of making the metallized mold includes forming a female parent or predecessor master tool that may be used to produce a large number of the metallized male molds for producing new and improved three-dimensional printed circuit boards. The new and improved three-dimensional printed circuit board includes a substrate composed of a high heat deflective plastic, and a plurality of recesses or grooves molded into the substrate surface for receiving therein the fine pitch, closely spaced-apart leads of an integrated circuit. A plurality of metallized sunken pads or lands are adhered or bonded within the grooves for establishing an electrical path within each groove.
Abstract:
A method of forming electrically conductive paths within grooves formed in a substrate wherein the width of the grooves is of the same order of magnitude as the thickness of an electrically conductive layer deposited on the substrate and in the grooves. The substrate with grooves therein is exposed to a medium whereby electrically conductive material from the medium deposits substantially uniformly on all surfaces of the substrate which are exposed to the medium. In this way, the build-up of conductive material in grooves will take place along the side walls as well as the bottom of the grooves. If the layer is of substantially the same order of magnitude as the width of the groove (about one half the groove width or greater), the grooves will fill up with conductive material. The remainder of the substrate will ultimately provide a substantially flat conductive layer on the substrate surface. The conductive material is then removed by an action which removes exposed conductor along the entire substrate surface at a uniform rate whereby the conductor will be substantially entirely removed from the substrate except for the portion thereof within the grooves. In this way an electrically conductive path of predetermined geometry is provided.