Abstract:
An electrostatic application apparatus 100 comprises a tubular electrode 1 forming a first flow path F1 whose inner surface is formed of an electrically conductive wall; a counter electrode 20 placed to block an extension of an axis line of the first flow path F1; a power source 30 applying a voltage between the tubular electrode 1 and the counter electrode 20, and a liquid supply unit 40 supplying a liquid to the first flow path F1. If an axial length of the first flow path F1 is L1 and an inside diameter of the first flow path F1 is D1, then L1/D1 is 35 or more, the inside diameter D1 of the first flow path is 0.5 to 2.0 mm, and the length L1 of the first flow path is 20 to 100 mm.
Abstract:
Disclosed are methods and systems for dispersing nanoparticles into a matrix. Disclosed is a system and method for coating a carrier film with a resin, spraying the resin with a suspended nanoparticle solution, and then transferring the resin-nanoparticle matrix to a collection vessel for dispensing for end use. Also, suspended nanoparticle solution is sprayed onto carrier film, the film is dried, a fabric layer is coated with resin layer, and nanoparticles are then transferred into the fabric resin layer to create a nanoparticle-infused fabric matrix. Fabric layers can also be coated with resin and sprayed with nanoparticles. Also disclosed is a system and method for coating a first carrier film with nanoparticles, coating a second carrier film with resin, and transferring nanoparticles from first carrier into the resin layer on the second carrier to create a nanoparticle infused resin material that can be collected and dispensed for end use.
Abstract:
Provided herein are methods, apparatuses, and systems for treating food articles, including meat, poultry, fish and other seafood, vegetables, fruits and other foods and food processing articles by spraying an antimicrobial or other agent onto the food or food processing articles. One embodiment of the invention may include a method for treating a food article comprising disposing a food article in a cavity within an enclosure having an outer shell and at least one inner plate disposed in the cavity, applying a first charge to a antimicrobial agent, applying a second charge to the at least one inner plate of the same polarity as the first charge, and spraying the antimicrobial agent into the cavity in a manner whereby at least a portion of the antimicrobial agent is caused to be repelled by the at least one inner plate and to at least partially coat the food article.
Abstract:
A process for producing a transparent conductive film, comprising (a) providing a graphene oxide gel; (b) dispersing metal nanowires in the graphene oxide gel to form a suspension; (c) dispensing and depositing the suspension onto a substrate; and (d) removing the liquid medium to form the film. The film is composed of metal nanowires and graphene oxide with a metal nanowire-to-graphene oxide weight ratio from 1/99 to 99/1, wherein the metal nanowires contain no surface-borne metal oxide or metal compound and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.
Abstract:
Disclosed are methods and systems for dispersing nanoparticles into a matrix. Disclosed is a system and method for coating a carrier film with a resin, spraying the resin with a suspended nanoparticle solution, and then transferring the resin-nanoparticle matrix to a collection vessel for dispensing for end use. Also, suspended nanoparticle solution is sprayed onto carrier film, the film is dried, a fabric layer is coated with resin layer, and nanoparticles are then transferred into the fabric resin layer to create a nanoparticle-infused fabric matrix. Fabric layers can also be coated with resin and sprayed with nanoparticles. Also disclosed is a system and method for coating a first carrier film with nanoparticles, coating a second carrier film with resin, and transferring nanoparticles from first carrier into the resin layer on the second carrier to create a nanoparticle infused resin material that can be collected and dispensed for end use.
Abstract:
To improve actual coating efficiency, the present invention has a coating robot provided with a coating unit configured by a plurality of rotary atomizing type electrostatic coating machines horizontally arranged, and a coating control apparatus that controls the coating unit and the coating robot. A diameter of each of bells is 50 mm or less. The coating material discharge amount of each rotary atomizing type electrostatic coating machine is 400 cc/min or less. A coating distance between each bell and a surface to be coated of a workpiece is controlled between 50 mm to 150 mm. The coating material discharge amounts of the plurality of electrostatic coating machines are controlled for the respective coating machines. The control of the coating material discharge amounts includes a pause of coating material discharge.
Abstract:
Described is a high solids coating composition having exceptional rheological properties and appearances comprising (a) a thermosetting binder, (b) from about 0.1 to about 10 wt. % based on binder solids of solid polyurea particles prepared by the reaction of a mixture of a polyisocyanate and an amino reactant comprising a primary or secondary monoamine that optionally has a hydroxyl or ether group or both, and (c) from about 5 to about 20 wt. % based on binder solids of a cellulose mixed ester having a number average molecular weight of from about 1000 to about 5600, a polydispersity of from about 1.2 to about 3.5, and a total degree of substitution per anhydroglucose unit of from about 3.08 to about 3.5.
Abstract:
A method of forming a lubricating coating on a razor blade that includes: providing a razor blade having a body and a cutting edge tapering from the body; providing a tank of a colloidal dispersion of a polymer having less than 2% in weight of polymer particles; providing a spray gun in fluid communication with the tank, the gun having an end directed to a blade-spraying region; placing the razor blade at a predetermined temperature (T) in the blade-spraying region; flowing the colloidal dispersion from the tank to the end of the spray gun, and in a direction to the razor blade; controlling a first gas stream to nebulise the colloidal dispersion into a mist in a dispersion region located between the end of the spray gun and the razor blade; independently controlling a second gas stream to control the mist properties; transporting the mist from the dispersion region to the razor blade placed in the blade-spraying region, the razor blade being at the predetermined temperature (T) so that water evaporates from the mist, and sintering the polymer.
Abstract:
A system capable of depositing a matrix film containing a low amount of impurities (e.g. neutral particles) is provided. The system includes: a first plate electrode 120 having an attachment surface on which a sample plate P is to be attached; a second plate electrode 130 arranged so as to face the attachment surface; a nozzle 110 for spraying a liquid containing a matrix substance into the space between the two electrodes 120 and 130 by an electrospray method, the nozzle 110 arranged so that none of the electrodes 120 and 130 lies on the central axis A of a spray flow of the liquid; and an electric field creator 140 for creating, between the two electrodes 120 and 130, an electric field for forcing electrically charged droplets contained in the spray flow of the liquid containing the matrix substance to move toward the attachment surface.
Abstract:
The provided technologies provide an implant closure device having a mesh layer formed on a flexible substrate, collectively forming a sealable member, that improves a seal formed over an aperture in a body lumen. The mesh facilitates a faster and more secure adherence of the sealable member to the surrounding edges at the puncture site. Furthermore, the provided technology may promote platelet-capture and encourage localized platelet aggregation at the exposed collagen in the wound edges on the mesh layer. The platelet impregnated mesh layer can facilitate cellular adhesion, enabling the sealable member that is local to the wound opening to act, in essence, as a “biological glue.”