Abstract:
Provided is a method of forming a monolayer of nanorods on a substrate, wherein the nanorods are at least substantially vertically aligned, the method including providing a droplet of a solution including the nanorods on a substrate, and controlling the temperature and the evaporation of the solution such that the internal region of the droplet is kept at near equilibrium status to allow formation of the monolayer of nanorods. Also provided is a monolayer of nanorods on the substrate thus obtained. Also provided is an optical arrangement and use of the optical arrangement.
Abstract:
A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.
Abstract:
A substrate treating apparatus includes a treating block including a plurality of cells arranged one over another. Each cell has treating units for treating substrates and a single main transport mechanism disposed in a transporting space for transporting the substrates to the treating units. The treating units include solution treating units and heat-treating units. The solution treating units are arranged at one side of the transporting space, the heat-treating units are arranged at the other side of the transporting space, and the main transport mechanism and the treating units are in substantially the same layout in plan view for the respective cells. The solution treating units are in substantially the same layout in side view for the respective cells, the heat-treating units are in substantially the same layout in side view for the respective cells, and treatments of the substrates carried out in the respective cells are the same.
Abstract:
This disclosure relates to a method for preparing vertically grown nanostructures of C60 and conjugated molecules, including: forming a C60 film or a conjugated organic molecular film; and introducing the C60 film or conjugated organic molecular film and a solvent into an airtight container, and then conducting solvent vapor annealing. According to the preparation method, C60 molecules and conjugated molecules may be vertically grown under mild conditions by a simple process.
Abstract:
First a metal plate is coated with a primer layer. Next the metal plate is coated with an adhesive layer over the primer layer. Then the metal plate is coated with a compound that includes an inorganic fiber, an organic fiber, an unvulcanized fluororubber, a peroxide for vulcanization and an inorganic filler over the primer layer and the adhesive layer. Thereafter, the metal plate coated with the compound is hot pressed with the fluororubber being vulcanized.
Abstract:
The present invention relates to a method for producing matt and scratch-resistant coatings that takes place under exposure to actinic radiation on coating systems containing activated double bonds under radical polymerization.
Abstract:
An inkjet-based process for programmable deposition of thin films of a user-defined profile. Drops of a pre-cursor liquid organic material are dispensed at various locations on a substrate by a multi-jet. A superstrate that has been bowed due to a backside pressure is brought down such that a first contact of the drops is made by a front side of the superstrate thereby initiating a liquid front that spreads outward merging with the drops to form a contiguous film captured between the substrate and the superstrate. A non-equilibrium transient state of the superstrate, the contiguous film and the substrate then occurs after a duration of time. The contiguous film is then cured to crosslink it into a polymer. The superstrate is then separated from the polymer thereby leaving a polymer film on the substrate. In such a manner, non-uniform films can be formed without significant material wastage in an inexpensive manner.
Abstract:
This disclosure describes the application of a supplemental corona source to provide surface charge on submicrometer particles to enhance collection efficiency and micro-structural density during electrostatic collection.
Abstract:
A process and apparatus for treatment of volatile organic compounds and the process comprises an untreated airflow dew point temperature sensing step of sensing a dew point temperature of the untreated airflow as a reference temperature, a humidification and condensation processing step of spraying water mist all over the exhaust gas flow and condensing the exhaust gas flow into condensate contained the volatile organic compounds, a treated exhaust gas flow dew point temperature sensing step of sensing a dew point temperature of the treated exhaust gas flow after the humidification and condensation processing step, a collection step of collecting dropped condensate from the humidification and condensation processing step and then transporting the dropped condensate back to the humidification and condensation processing step for circulation spray, and a control step of controlling the dew point temperature of the treated exhaust gas flow to be close to the reference temperature.
Abstract:
A method of forming a heterogeneous protective layer on a surface of a component in a reactor is useful for repair and/or protection. The reactor may be used for production of polycrystalline silicon or a reactant thereof. The heterogeneous protective layer comprises silicon, and may comprise silicon carbide (SiC) and/or silicon nitride (Si3N4). The method comprises providing a polymeric composition for forming the heterogeneous protective layer. The polymeric composition may comprise a polycarbosilane and/or a polysilazane. The method further comprises providing the component. The surface of the component comprises carbon, such as graphite, carbon fiber reinforced carbon, or a combination thereof. The method further comprises applying the polymeric composition on the surface to form a pre-cured coating layer. The method further comprises heating the pre-cured coating layer to form the heterogeneous protective layer. The surface of the component is present within the reactor during heating of the pre-cured coating layer.