Abstract:
Multispectral images, including ultraviolet light and its interactions with ultraviolet light-interactive compounds, can be captured, processed, and represented to a user. Ultraviolet-light related information can be conveniently provided to a user to allow the user to have awareness of UV characteristics and the user's risk to UV exposure.
Abstract:
A pulse generator generates high voltage discharge pulses in a manner that may be controlled and monitored. Pulse generator operation may be monitored to measure characteristics associated with pulse generator operation and to produce pulse generator data representative of those characteristics. Pulse generator operation may be monitored by monitoring the discharge pulses produced by the pulse generator and/or the charging of energy storage elements within the pulse generator in preparation for a subsequent discharge pulse. The pulse generator data may be used, for example, to identify pulse generator wear or degradation, to identify problems with pulse generator operation, and/or to control pulse generator operation for improved performance. The pulse generator may also be configured and controlled to generate a high-voltage initiation pulse to initiate a subsequent discharge pulse while being contained within a relatively small form factor. The pulse generator may be used in spectroscopy systems or other systems using high voltage discharge pulses.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. In some embodiments an effective CDSL is constructed with only one laser. At least one embodiment includes a coherent scanning laser system (CSL) for generating pulse pairs with a time varying time delay. A CDSL, effective CDSL, or CSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
A gas detection system comprising a case having a hollow chamber, a gas input port, a gas output port, a radiation emitting device, and a photo detector. The gas input port may be disposed on the case for a test gas flowing into the chamber. The gas output port may be disposed on the case for the test gas flowing out of the chamber. The radiation emitting device may be disposed on the case and operated in a surface plasmonic mode or a waveguide mode for emitting a narrow bandwidth thermal radiation light source with multi-peak wavelengths into the chamber, wherein the multi-peak wavelengths may comprise a first absorption wavelength and a second absorption wavelength of the test gas. The photo detector may be disposed on the case for detecting light intensity of the light source passing through the chamber to determine the concentration of the test gas.
Abstract:
The present invention may include loading a diagnostic sample onto a sample stage, focusing light from an illumination source disposed on a multi-axis stage onto the diagnostic sample, collecting a portion of light reflected from a surface of the diagnostic sample utilizing a detector, wherein the illumination source and the detector are optically direct-coupled via an optical system, acquiring a set of diagnostic parameters indicative of illumination source position drift from the diagnostic sample, determining a magnitude of the illumination source position drift by comparing the acquired set of diagnostic parameters to an initial set of parameters obtained from the diagnostic sample at a previously measured alignment condition, determining a direction of the illumination source position drift; and providing illumination source position adjustment parameters configured to correct the determined magnitude and direction of the illumination source position drift to the multi-axis actuation control system of the multi-axis stage.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, a hyperspectral/multispectral imaging device includes a lens configured to receive light backscattered by an object, a plurality of photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a plurality of beam splitters in optical communication with the lens and the photo-sensors, where each beam splitter splits the light received by the lens into a plurality of optical paths, each path configured to direct light to a corresponding photo-sensor through the bandpass filter corresponding to the respective photo-sensor.
Abstract:
A lasing wavelength of a laser diode is determined by applying a forward current to the p-n junction of the laser diode and measuring a voltage across the p-n junction. The lasing wavelength can be determined by performing a simple wavelength calibration of the laser diode. This allows one to stabilize the lasing wavelength, and also to use the laser diode as a reference wavelength source.
Abstract:
A lightpipe is coupled to a spectrometer based on a laterally variable optical filter. The lightpipe may be used for both guiding the illuminating light towards a sample and collecting light reflected or emitted by the sample upon illumination, for spectral measurements at a distance from the sample afforded by the lightpipe. The lightpipe may include a slab of homogeneous transparent material for unconstrained bidirectional propagation of light in bulk of the material. The lightpipe may be solid, hollow, or sectioned for separate guiding of the illuminating and the reflected light.
Abstract:
A novel emission and transmission optical spectrometer is introduced herein, which is capable of optically interrogating solid or liquid samples of organic, inorganic or polymeric chemistry, for pharmaceutical research, forensic and liquid analyses, used for identification, purity check, and/or structural study of chemicals. The beneficial aspects of the system are a single sample compartment as confined within the walls of the spectrometer housing, a more compact accessory, and the capability of making both emission (e.g., Raman and Fluorescence) and Infrared (IR, NIR) transmission measurements at designed sample points.