Abstract:
A calibration device for calibrating output of a display device includes a light source, an integrating sphere, a filter, a narrowband instrument, a wideband instrument, and a data processing unit. The light rays emitted by the light source passing through the filter and enter the integrating sphere. The narrowband instrument and the wideband instrument are configured to measure the color measured data. The data processing unit is configured to receive the color measured data to generate a calibration matrix based on the color measured. The calibration matrix is used to calibrate the output from the wideband instrument.
Abstract:
A method for correcting an infrared absorption spectrum comprises the steps of:—providing a measured infrared absorption spectrum from a sample,—determining a baseline correction curve by using at least one spectral interval in which an absorption quantity is expected to be null for at least two wavelength quantities,—subtracting the baseline correction curve from the measured infrared absorption spectrum, to obtain a first corrected absorption spectrum,—extracting at least one absorption band whose position is out of the fingerprint region,—comparing each extracted absorption band with the expected absorption band,—correcting the baseline correction curve in accordance with the results of the comparing step, to obtain a corrected baseline correction curve, and—subtracting the corrected baseline correction curve from the measured infrared absorption spectrum, to obtain a second corrected absorption spectrum.
Abstract:
A method for calibrating a test light to simulate a fire includes measuring a baseline resistance induced in a sensor cell of a two-color detector in response to a controlled fire. The method includes monitoring a test resistance induced in the sensor cell in response to exposure to emissions from a test light and adjusting the emissions of the test light until the test resistance of the sensor cell equals the baseline resistance of the sensor cell to achieve a calibration setting for the test light. A test light for a detector includes a housing and a first LED within the housing having a first emission wavelength. A second LED is within the housing. The second LED has a second emission wavelength. The second emission wavelength is different than the first emission wavelength.
Abstract:
A method of spatially and spectrally calibrating a spectrophotometer including: a) emitting a white light illumination output from a full width illumination source; b) illuminating a test patch with the white light illumination output; c) reflecting a portion of the white light illumination output from the test patch to form a white light reflected illumination output; d) receiving the white light reflected illumination output at first, second and third rows of photosensitive elements to form a first calibration data set; e) emitting a cyan light illumination output from the full width illumination source; f) illuminating the test patch with the cyan light illumination output; g) reflecting a portion of the cyan light illumination output from the test patch to form a cyan light reflected illumination output; and, h) receiving the cyan light reflected illumination output at the second and third rows of photosensitive elements to form a second calibration data set.
Abstract:
A compact spectrometer includes an excitation light source configured to generate excitation light and arranged to illuminate a spot on a sample. A dispersive element includes at least one movable component and spatially separates output light emanating from the sample in response to the excitation light into a plurality of different wavelength bands. A moveable component of the dispersive element causes the plurality of different wavelength bands of the output light to be scanned across a detector. The detector includes at least one light sensor that senses the wavelength bands of the output light and generates an output electrical signal in response to the sensed output light.
Abstract:
In order to reduce a variation in the light amount of light detected in every reference measurement cycle in an absorption spectrometer 1, it is adapted to tilt at least one surface selected from among incident surfaces and emitting surfaces of all translucent members constituting a reference cell with respect to the light axis of light traveling along a light path.
Abstract:
An optical sensor device which measures in a spatially resolving manner is disclosed. In order to devise such a sensor device with which a contacting measurement of the article to be measured can be carried out and which can be mass-produced, the sensor device is designed such that a transfer of the calibration onto individual sensor devices is possible with high accuracy. According to certain embodiments of the design of the sensor device and of the evaluation methods, interferences with the measurement of the amount of the target substance are minimized
Abstract:
Validation verification data quantifying an intensity of light reaching a detector of a spectrometer from a light source of the spectrometer after the light passes through a validation gas across a known path length can be collected or received. The validation gas can include an amount of an analyte compound and an undisturbed background composition that is representative of a sample gas background composition of a sample gas to be analyzed using a spectrometer. The sample gas background composition can include one or more background components. The validation verification data can be compared with stored calibration data for the spectrometer to calculate a concentration adjustment factor, and sample measurement data collected with the spectrometer can be modified using this adjustment factor to compensate for collisional broadening of a spectral peak of the analyte compound by the background components. Related methods, articles of manufacture, systems, and the like are described.
Abstract:
Frequency registration deviations occurring during a scan of a frequency or wavelength range by a spectroscopic analysis system can be corrected using passive and/or active approaches. A passive approach can include determining and applying mathematical conversions to a recorded field spectrum. An active approach can include modifying one or more operating parameters of the spectroscopic analysis system to reduce frequency registration deviation.
Abstract:
A method and system for correcting the effect of intensity fluctuations of the transmitted light in an absorption spectroscopy system used for the detection or measurement of chemical species in a medium, whereby one or more modulation bursts are imposed onto a light beam that passes through the medium. This burst signal may be obtained by modulating the bias current of a tunable diode laser, and the modulation burst signal may be optimally at the second harmonic of the modulation frequency of a wavelength modulated beam to allow usage of the same signal path processing used for the spectroscopic detection of the measurand for a second harmonic detection system. The burst signal can be controlled using a smooth window function to minimise the effects of non-linear perturbations that are inherent in tunable diode laser wavelength modulation spectroscopy systems, of optical interference fringes (etalons) and of the residual light absorption by background chemical species or the measurand at the wavelength coinciding with the modulation burst.