Abstract:
A capacitor arrangement structure includes: a first wiring pattern; a second wiring pattern; a first electrode pattern that protrudes from the first wiring pattern toward the second wiring pattern; a second electrode pattern that protrudes from the second wiring pattern toward the first wiring pattern so as to run in parallel to the first electrode pattern; and a plurality of capacitors that are arranged in parallel between the first electrode pattern and the second electrode pattern.
Abstract:
A printed wiring board with a component connection pad, such as a solder pad, providing thermal stress compensation for a surface mount circuit component and method for making such a pad. The component connection pad includes opposed groups of multiple conductive fingers that are mutually connected at their far ends and separated at their near ends where they have surfaces for mounting a single surface mount circuit component.
Abstract:
An electrostatic-capacitance touch panel includes of X electrodes which are formed above a front surface of the electrostatic-capacitance touch panel, Y electrodes which intersect with the X electrodes, a back-surface electrode which is formed above a back surface of the electrostatic-capacitance touch panel, X-electrode signal lines which supply signals to the X electrodes from both ends of each X electrode, Y-electrode signal lines which supply signals to the Y electrodes from both ends of each Y electrode, a flexible printed circuit board connected to the X-electrode signal lines and the Y-electrode signal lines at a connection portion, intersecting portions where the X electrodes and the Y electrodes overlap with each other, and electrode portions each of which is formed between two intersecting portions. A back-surface-connection-use terminal is formed outside of the connection portion, and the back-surface-connection-use terminal and the back-surface electrode are connected to each other using a conductive member.
Abstract:
A double-sided circuit board including a substrate having a first surface and a second surface on an opposite side of the first surface and having a penetrating hole extending between the first surface and the second surface, a first conductive circuit formed on the first surface of the substrate, a second conductive circuit formed on the second surface of the substrate, and a through-hole conductor formed in the penetrating hole of the substrate and electrically connecting the first conductive circuit and the second conductive circuit. The penetrating hole comprises a first hole having a first opening with a diameter R1 on the first surface of the substrate, a second hole having a second opening with a diameter R2 on the second surface of the substrate, and a third hole connecting the first hole and the second hole and having a diameter smaller than at least one of R1 and R2.
Abstract:
A printed wiring board including a core substrate, a build-up layer formed over the core substrate and including a first insulating layer, a conductor layer formed over the first insulating layer, and a second insulating layer formed over the conductor layer, and one or more wiring patterns formed over the first insulating layer. The conductor layer includes conductor portions, and the conductor portions have notched portions, respectively, facing each other across the wiring pattern.
Abstract:
The invention relates to a laboratory sample instrument with a cable holding space in which a printed circuit board cable device is arranged. The printed circuit board cable device has at least one printed circuit board with first and second sides and, arranged in succession, at least one first circuit board section, at least one second circuit board section and at least one third circuit board section, and with the circuit board having a number of conductor tracks arranged in parallel with respect to one another and extending from a first track section arranged in the first circuit board section, via the second circuit board section to the third circuit board section, in which a second track section is arranged, wherein, in the second circuit board section, at least one conductor track is arranged on the first side of the board and at least one track is arranged on the second side.
Abstract:
A tape wiring substrate may have dispersion wiring patterns. The dispersion wiring patterns may be provided between input/output wiring pattern groups to compensate for the intervals therebetween. Connecting wiring patterns may be configured to connect the dispersion wiring patterns to a first end of the adjacent input/output wiring pattern.
Abstract:
A surface mounting structure for a surface mounting electronic component has an electronic component, a land, a wiring, and an electrical connection pattern. The electronic component has electrodes at opposite ends thereof. The land is connected to each electrode through a solder. The wiring is connected to the land and has a width which is smaller than a width of the electronic component in a width direction thereof. The wiring is connected to the electrical connection pattern. The electrical connection pattern has on a side on which the wiring is connected to the electrical connection pattern a width which is larger than the width of the electronic component in the width direction thereof.
Abstract:
A motherboard interconnection device includes a top layer, a bottom layer, a first and a third electronic elements positioned on the top layer, and a second and a fourth electronic elements positioned on the bottom layer. A first end of the first electronic element on the top layer is connected to the first end of the second electronic element on the bottom layer with a first via hole, and the first end of the third electronic element on the top layer is connected to the first end of the fourth electronic element on the bottom layer with a second via hole. The second ends of the two electronic elements on the top layer are connected to a first part, and the second ends of the two electronic elements on the bottom layer are connected to a second part.
Abstract:
A double-sided circuit board including a substrate having a first surface and a second surface on an opposite side of the first surface and having a penetrating hole extending between the first surface and the second surface, a first conductive circuit formed on the first surface of the substrate, a second conductive circuit formed on the second surface of the substrate, and a through-hole conductor formed in the penetrating hole of the substrate and electrically connecting the first conductive circuit and the second conductive circuit. The penetrating hole comprises a first hole having a first opening with a diameter R1 on the first surface of the substrate, a second hole having a second opening with a diameter R2 on the second surface of the substrate, and a third hole connecting the first hole and the second hole and having a diameter smaller than at least one of R1 and R2.