Abstract:
Embedding a discrete electrical device in a printed circuit board (PCB) includes: providing a vertical via as a blind hole from a horizontal surface of the PCB to an electrically conductive structure in a first layer, the first layer being one layer of a first core section of a plurality of core sections vertically arranged above each other, each core section including lower and upper conductive layers, and a non-conductive layer in between; inserting the electrical device into the via, with the device extending within at least two of the core sections; establishing a first electrical connection between a first electrical device contact device and the electrically conductive structure in the first layer; and establishing a second electrical connection between a second electrical device contact and a second layer, the second layer being one of the electrically conductive layers of a second horizontal core section.
Abstract:
A microcomputer provided on a rectangular semiconductor board has memory interface circuits. The memory interface circuits are separately disposed in such positions as to extend along the peripheries of the semiconductor board on both sides from one corner as a reference position. In this case, limitations to size reduction imposed on the semiconductor board can be reduced compared with a semiconductor board having memory interface circuits only on one side. Respective partial circuits on each of the separated memory interface circuits have equal data units associated with data and data strobe signals. Thus, the microcomputer has simplified line design on a mother board and on a module board.
Abstract:
A noise reducing electronic component is used as mounted on a circuit board. The noise reducing electronic component includes: a floating electrode disposed so as to be capacitively coupled to a ground conductor of the circuit board; a radiation element connected to the floating electrode; and a shielding member to shield electromagnetic waves radiated from the radiation element. With this noise reducing electronic component, noise in a printed circuit board and the like can be reduced.
Abstract:
A multilayered circuit board having a metal-free region vertically extending through at least a portion of a conductive layer, which lies generally parallel to a horizontal plane, vertically spaced from an outer surface. Heat-emitting and heat-sensitive components are mounted on the outer surface. The heat-emitting component is vertically and laterally spaced from the metal-free region, whereas the heat-sensitive component is vertically spaced and laterally aligned within the metal-free region such that the metal-free region is a thermal barrier that shields heat-sensitive component from radial heat flowing from the heat-emitting component.
Abstract:
An element housing package includes a substrate, a frame body, and an input-output terminal. The input-output terminal has a wiring conductor formed in a stacked body consisting of dielectric layers and ground layers which are alternately laminated, to extend through an inside of the stacked body, and a lead terminal connected to the wiring conductor. A non-formation region is provided in the ground layers around the wiring conductor, which passes through the inside of the input-output terminal in a vertical direction of the stacked body. The non-formation region has, in order from an upper side toward a lower side, a first non-formation section, a second non-formation section having an area smaller than that of the first non-formation section, and a third non-formation section having an area larger than that of the second non-formation section.
Abstract:
A printed circuit board is disclosed. The printed circuit board comprises a substrate having a top surface and a bottom surface. A ground plane is on the bottom surface. A signal trace is on the top surface along a first direction. At least two isolated power planes are on the top surface adjacent to opposite sides of the signal trace, respectively. A conductive connection along a second direction couples to the two power planes, across the signal trace without electrically connecting to the signal trace, wherein the signal trace doesn't pass over any split of the ground plane.
Abstract:
Implementations of the present disclosure involve an apparatus and/or method for a large array of AC coupling/DC blocking capacitors on a printed circuit board (PCB) of a microelectronic circuit. The method provides for the placement of the blocking capacitors (and associated vias) to be placed on/through the PCB in a small area while yielding low crosstalk or interference between the vias. In one particular embodiment, the blocking capacitors are placed on the PCB in an alternating pattern, with a pair of blocking capacitors placed on the top side of the PCB followed by a pair of blocking capacitors on the bottom side of the PCB, and so on. Further, top side capacitor vias may be back-drilled from the bottom side and bottom side capacitor vias may be back-drilled from the top side.
Abstract:
A package substrate is provided that includes a substrate and a capacitor. The substrate comprises a cavity penetrating a core layer and metal layers of the substrate. The capacitor comprises electrode pads and is disposed in the cavity. One of the metal layers of the substrate includes a discontinuous metal plane, and the electrode pads directly contact the discontinuous metal plane.
Abstract:
An element housing package includes a substrate, a frame body, and an input-output terminal. The input-output terminal has a wiring conductor formed in a stacked body consisting of dielectric layers and ground layers which are alternately laminated, to extend through an inside of the stacked body, and a lead terminal connected to the wiring conductor. A non-formation region is provided in the ground layers around the wiring conductor, which passes through the inside of the input-output terminal in a vertical direction of the stacked body. The non-formation region has, in order from an upper side toward a lower side, a first non-formation section, a second non-formation section having an area smaller than that of the first non-formation section, and a third non-formation section having an area larger than that of the second non-formation section.
Abstract:
An apparatus for preventing an electric overstress in an electronic device, which is capable of protecting the electronic device from the electric overstress is provided. The apparatus includes an interface unit for connecting the electronic device to an external device, includes an electric power terminal which is included in the interface unit and includes a first electric power terminal and a second electric power terminal which are electrically separated, and an electric overstress preventing unit connected with the first and second electric power terminals.